Abstract:May-Thurner Syndrome (MTS), also known as iliac vein compression syndrome or Cockett's syndrome, is a condition potentially impacting over 20 percent of the population, leading to an increased risk of iliofemoral deep venous thrombosis. In this paper, we present a 3D-based deep learning approach called MTS-Net for diagnosing May-Thurner Syndrome using CT scans. To effectively capture the spatial-temporal relationship among CT scans and emulate the clinical process of diagnosing MTS, we propose a novel attention module called the dual-enhanced positional multi-head self-attention (DEP-MHSA). The proposed DEP-MHSA reconsiders the role of positional embedding and incorporates a dual-enhanced positional embedding in both attention weights and residual connections. Further, we establish a new dataset, termed MTS-CT, consisting of 747 subjects. Experimental results demonstrate that our proposed approach achieves state-of-the-art MTS diagnosis results, and our self-attention design facilitates the spatial-temporal modeling. We believe that our DEP-MHSA is more suitable to handle CT image sequence modeling and the proposed dataset enables future research on MTS diagnosis. We make our code and dataset publicly available at: https://github.com/Nutingnon/MTS_dep_mhsa.
Abstract:Colorectal cancer is the third most common cancer diagnosed in both men and women in the United States. Most colorectal cancers start as a growth on the inner lining of the colon or rectum, called 'polyp'. Not all polyps are cancerous, but some can develop into cancer. Early detection and recognition of the type of polyps is critical to prevent cancer and change outcomes. However, visual classification of polyps is challenging due to varying illumination conditions of endoscopy, variant texture, appearance, and overlapping morphology between polyps. More importantly, evaluation of polyp patterns by gastroenterologists is subjective leading to a poor agreement among observers. Deep convolutional neural networks have proven very successful in object classification across various object categories. In this work, we compare the performance of the state-of-the-art general object classification models for polyp classification. We trained a total of six CNN models end-to-end using a dataset of 157 video sequences composed of two types of polyps: hyperplastic and adenomatous. Our results demonstrate that the state-of-the-art CNN models can successfully classify polyps with an accuracy comparable or better than reported among gastroenterologists. The results of this study can guide future research in polyp classification.
Abstract:Polyp has long been considered as one of the major etiologies to colorectal cancer which is a fatal disease around the world, thus early detection and recognition of polyps plays a crucial role in clinical routines. Accurate diagnoses of polyps through endoscopes operated by physicians becomes a challenging task not only due to the varying expertise of physicians, but also the inherent nature of endoscopic inspections. To facilitate this process, computer-aid techniques that emphasize fully-conventional image processing and novel machine learning enhanced approaches have been dedicatedly designed for polyp detection in endoscopic videos or images. Among all proposed algorithms, deep learning based methods take the lead in terms of multiple metrics in evolutions for algorithmic performance. In this work, a highly effective model, namely the faster region-based convolutional neural network (Faster R-CNN) is implemented for polyp detection. In comparison with the reported results of the state-of-the-art approaches on polyps detection, extensive experiments demonstrate that the Faster R-CNN achieves very competing results, and it is an efficient approach for clinical practice.