Abstract:The primary challenge of multi-label active learning, differing it from multi-class active learning, lies in assessing the informativeness of an indefinite number of labels while also accounting for the inherited label correlation. Existing studies either require substantial computational resources to leverage correlations or fail to fully explore label dependencies. Additionally, real-world scenarios often require addressing intrinsic biases stemming from imbalanced data distributions. In this paper, we propose a new multi-label active learning strategy to address both challenges. Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships within the label space of annotated samples, enabling a holistic assessment of uncertainty rather than treating labels as isolated elements. Furthermore, alongside diversity, our model employs ensemble pseudo labeling and beta scoring rules to address data imbalances. Extensive experiments on four realistic datasets demonstrate that our strategy consistently achieves more reliable and superior performance, compared to several established methods.
Abstract:Topic modeling is a fundamental task in natural language processing, allowing the discovery of latent thematic structures in text corpora. While Large Language Models (LLMs) have demonstrated promising capabilities in topic discovery, their direct application to topic modeling suffers from issues such as incomplete topic coverage, misalignment of topics, and inefficiency. To address these limitations, we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs with many existing Neural Topic Models (NTMs). In LLM-ITL, global topics and document representations are learned through the NTM, while an LLM refines the topics via a confidence-weighted Optimal Transport (OT)-based alignment objective. This process enhances the interpretability and coherence of the learned topics, while maintaining the efficiency of NTMs. Extensive experiments demonstrate that LLM-ITL can help NTMs significantly improve their topic interpretability while maintaining the quality of document representation.
Abstract:Diffusion models have made significant strides in language-driven and layout-driven image generation. However, most diffusion models are limited to visible RGB image generation. In fact, human perception of the world is enriched by diverse viewpoints, including chromatic contrast, thermal illumination, and depth information. In this paper, we introduce a novel diffusion model for general layout-guided cross-modal ``RGB+X'' generation, called DiffX. Firstly, we construct the cross-modal image datasets with text description by using LLaVA for image captioning, supplemented by manual corrections. Notably, DiffX presents a simple yet effective cross-modal generative modeling pipeline, which conducts diffusion and denoising processes in the modality-shared latent space, facilitated by our Dual Path Variational AutoEncoder (DP-VAE). Moreover, we introduce the joint-modality embedder, which incorporates a gated cross-attention mechanism to link layout and text conditions. Meanwhile, the advanced Long-CLIP is employed for long caption embedding to improve user guidance. Through extensive experiments, DiffX demonstrates robustness and flexibility in cross-modal generation across three RGB+X datasets: FLIR, MFNet, and COME15K, guided by various layout types. It also shows the potential for adaptive generation of ``RGB+X+Y'' or more diverse modalities. Our code and constructed cross-modal image datasets are available at https://github.com/zeyuwang-zju/DiffX.
Abstract:Topic modeling has been a widely used tool for unsupervised text analysis. However, comprehensive evaluations of a topic model remain challenging. Existing evaluation methods are either less comparable across different models (e.g., perplexity) or focus on only one specific aspect of a model (e.g., topic quality or document representation quality) at a time, which is insufficient to reflect the overall model performance. In this paper, we propose WALM (Words Agreement with Language Model), a new evaluation method for topic modeling that comprehensively considers the semantic quality of document representations and topics in a joint manner, leveraging the power of large language models (LLMs). With extensive experiments involving different types of topic models, WALM is shown to align with human judgment and can serve as a complementary evaluation method to the existing ones, bringing a new perspective to topic modeling. Our software package will be available at https://github.com/Xiaohao-Yang/Topic_Model_Evaluation, which can be integrated with many widely used topic models.
Abstract:May-Thurner Syndrome (MTS), also known as iliac vein compression syndrome or Cockett's syndrome, is a condition potentially impacting over 20 percent of the population, leading to an increased risk of iliofemoral deep venous thrombosis. In this paper, we present a 3D-based deep learning approach called MTS-Net for diagnosing May-Thurner Syndrome using CT scans. To effectively capture the spatial-temporal relationship among CT scans and emulate the clinical process of diagnosing MTS, we propose a novel attention module called the dual-enhanced positional multi-head self-attention (DEP-MHSA). The proposed DEP-MHSA reconsiders the role of positional embedding and incorporates a dual-enhanced positional embedding in both attention weights and residual connections. Further, we establish a new dataset, termed MTS-CT, consisting of 747 subjects. Experimental results demonstrate that our proposed approach achieves state-of-the-art MTS diagnosis results, and our self-attention design facilitates the spatial-temporal modeling. We believe that our DEP-MHSA is more suitable to handle CT image sequence modeling and the proposed dataset enables future research on MTS diagnosis. We make our code and dataset publicly available at: https://github.com/Nutingnon/MTS_dep_mhsa.
Abstract:Resolving conflicts is essential to make the decisions of multi-view classification more reliable. Much research has been conducted on learning consistent informative representations among different views, assuming that all views are identically important and strictly aligned. However, real-world multi-view data may not always conform to these assumptions, as some views may express distinct information. To address this issue, we develop a computational trust-based discounting method to enhance the existing trustworthy framework in scenarios where conflicts between different views may arise. Its belief fusion process considers the trustworthiness of predictions made by individual views via an instance-wise probability-sensitive trust discounting mechanism. We evaluate our method on six real-world datasets, using Top-1 Accuracy, AUC-ROC for Uncertainty-Aware Prediction, Fleiss' Kappa, and a new metric called Multi-View Agreement with Ground Truth that takes into consideration the ground truth labels. The experimental results show that computational trust can effectively resolve conflicts, paving the way for more reliable multi-view classification models in real-world applications.
Abstract:Prompt learning has shown to be an efficient and effective fine-tuning method for vision-language models like CLIP. While numerous studies have focused on the generalisation of these models in few-shot classification, their capability in near out-of-distribution (OOD) detection has been overlooked. A few recent works have highlighted the promising performance of prompt learning in far OOD detection. However, the more challenging task of few-shot near OOD detection has not yet been addressed. In this study, we investigate the near OOD detection capabilities of prompt learning models and observe that commonly used OOD scores have limited performance in near OOD detection. To enhance the performance, we propose a fast and simple post-hoc method that complements existing logit-based scores, improving near OOD detection AUROC by up to 11.67% with minimal computational cost. Our method can be easily applied to any prompt learning model without change in architecture or re-training the models. Comprehensive empirical evaluations across 13 datasets and 8 models demonstrate the effectiveness and adaptability of our method.
Abstract:Federated Learning (FL) seeks to train a model collaboratively without sharing private training data from individual clients. Despite its promise, FL encounters challenges such as high communication costs for large-scale models and the necessity for uniform model architectures across all clients and the server. These challenges severely restrict the practical applications of FL. To address these limitations, the integration of knowledge distillation (KD) into FL has been proposed, forming what is known as Federated Distillation (FD). FD enables more flexible knowledge transfer between clients and the server, surpassing the mere sharing of model parameters. By eliminating the need for identical model architectures across clients and the server, FD mitigates the communication costs associated with training large-scale models. This paper aims to offer a comprehensive overview of FD, highlighting its latest advancements. It delves into the fundamental principles underlying the design of FD frameworks, delineates FD approaches for tackling various challenges, and provides insights into the diverse applications of FD across different scenarios.
Abstract:Within the scope of natural language processing, the domain of multi-label text classification is uniquely challenging due to its expansive and uneven label distribution. The complexity deepens due to the demand for an extensive set of annotated data for training an advanced deep learning model, especially in specialized fields where the labeling task can be labor-intensive and often requires domain-specific knowledge. Addressing these challenges, our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework. It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations. These vector representations guide the diverse selection of informative samples, directly linking this process to the model's expected proper score. Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification, presenting encouraging outcomes across various architectural and dataset scenarios.
Abstract:The effectiveness of active learning largely depends on the sampling efficiency of the acquisition function. Expected Loss Reduction (ELR) focuses on a Bayesian estimate of the reduction in classification error, and more general costs fit in the same framework. We propose Bayesian Estimate of Mean Proper Scores (BEMPS) to estimate the increase in strictly proper scores such as log probability or negative mean square error within this framework. We also prove convergence results for this general class of costs. To facilitate better experimentation with the new acquisition functions, we develop a complementary batch AL algorithm that encourages diversity in the vector of expected changes in scores for unlabeled data. To allow high-performance classifiers, we combine deep ensembles, and dynamic validation set construction on pretrained models, and further speed up the ensemble process with the idea of Monte Carlo Dropout. Extensive experiments on both texts and images show that the use of mean square error and log probability with BEMPS yields robust acquisition functions and well-calibrated classifiers, and consistently outperforms the others tested. The advantages of BEMPS over the others are further supported by a set of qualitative analyses, where we visualise their sampling behaviour using data maps and t-SNE plots.