Abstract:Topic modeling is a fundamental task in natural language processing, allowing the discovery of latent thematic structures in text corpora. While Large Language Models (LLMs) have demonstrated promising capabilities in topic discovery, their direct application to topic modeling suffers from issues such as incomplete topic coverage, misalignment of topics, and inefficiency. To address these limitations, we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs with many existing Neural Topic Models (NTMs). In LLM-ITL, global topics and document representations are learned through the NTM, while an LLM refines the topics via a confidence-weighted Optimal Transport (OT)-based alignment objective. This process enhances the interpretability and coherence of the learned topics, while maintaining the efficiency of NTMs. Extensive experiments demonstrate that LLM-ITL can help NTMs significantly improve their topic interpretability while maintaining the quality of document representation.
Abstract:Recent LLM (Large Language Models) advancements benefit many fields such as education and finance, but HR has hundreds of repetitive processes, such as access requests, medical claim filing and time-off submissions, which are unaddressed. We relate these tasks to the LLM agent, which has addressed tasks such as writing assisting and customer support. We present HR-Agent, an efficient, confidential, and HR-specific LLM-based task-oriented dialogue system tailored for automating repetitive HR processes such as medical claims and access requests. Since conversation data is not sent to an LLM during inference, it preserves confidentiality required in HR-related tasks.
Abstract:Large language models (LLMs) often show unwarranted preference for certain choice options when responding to multiple-choice questions, posing significant reliability concerns in LLM-automated systems. To mitigate this selection bias problem, previous solutions utilized debiasing methods to adjust the model's input and/or output. Our work, in contrast, investigates the model's internal representation of the selection bias. Specifically, we introduce a novel debiasing approach, Bias Node Pruning (BNP), which eliminates the linear layer parameters that contribute to the bias. Furthermore, we present Auxiliary Option Injection (AOI), a simple yet effective input modification technique for debiasing, which is compatible even with black-box LLMs. To provide a more systematic evaluation of selection bias, we review existing metrics and introduce Choice Kullback-Leibler Divergence (CKLD), which addresses the insensitivity of the commonly used metrics to label imbalance. Experiments show that our methods are robust and adaptable across various datasets when applied to three LLMs.
Abstract:In this study, we tackle the challenge of inadequate and costly training data that has hindered the development of conversational question answering (ConvQA) systems. Enterprises have a large corpus of diverse internal documents. Instead of relying on a searching engine, a more compelling approach for people to comprehend these documents is to create a dialogue system. In this paper, we propose a robust dialog synthesising method. We learn the segmentation of data for the dialog task instead of using segmenting at sentence boundaries. The synthetic dataset generated by our proposed method achieves superior quality when compared to WikiDialog, as assessed through machine and human evaluations. By employing our inpainted data for ConvQA retrieval system pre-training, we observed a notable improvement in performance across OR-QuAC benchmarks.
Abstract:The effect of syntactic priming exhibits three well-documented empirical properties: the lexical boost, the inverse frequency effect, and the asymmetrical decay. We aim to show how these three empirical phenomena can be reconciled in a general learning framework, the hierarchical Bayesian model (HBM). The model represents syntactic knowledge in a hierarchical structure of syntactic statistics, where a lower level represents the verb-specific biases of syntactic decisions, and a higher level represents the abstract bias as an aggregation of verb-specific biases. This knowledge is updated in response to experience by Bayesian inference. In simulations, we show that the HBM captures the above-mentioned properties of syntactic priming. The results indicate that some properties of priming which are usually explained by a residual activation account can also be explained by an implicit learning account. We also discuss the model's implications for the lexical basis of syntactic priming.
Abstract:The Chinese numerical string corpus, serves as a valuable resource for speaker verification, particularly in financial transactions. Researches indicate that in short speech scenarios, text-dependent speaker verification (TD-SV) consistently outperforms text-independent speaker verification (TI-SV). However, TD-SV potentially includes the validation of text information, that can be negatively impacted by reading rhythms and pauses. To address this problem, we propose an end-to-end speaker verification system that enhances TD-SV by decoupling speaker and text information. Our system consists of a text embedding extractor, a speaker embedding extractor and a fusion module. In the text embedding extractor, we employ an enhanced Transformer and introduce a triple loss including text classification loss, connectionist temporal classification (CTC) loss and decoder loss; while in the speaker embedding extractor, we create a multi-scale pooling method by combining sliding window attentive statistics pooling (SWASP) with attentive statistics pooling (ASP). To mitigate the scarcity of data, we have recorded a publicly available Chinese numerical corpus named SHALCAS22A (hereinafter called SHAL), which can be accessed on Open-SLR. Moreover, we employ data augmentation techniques using Tacotron2 and HiFi-GAN. Our method achieves an equal error rate (EER) performance improvement of 49.2% on Hi-Mia and 75.0% on SHAL, respectively.
Abstract:Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner.
Abstract:Recent breakthroughs in large language modeling have facilitated rigorous exploration of their application in diverse tasks related to tabular data modeling, such as prediction, tabular data synthesis, question answering, and table understanding. Each task presents unique challenges and opportunities. However, there is currently a lack of comprehensive review that summarizes and compares the key techniques, metrics, datasets, models, and optimization approaches in this research domain. This survey aims to address this gap by consolidating recent progress in these areas, offering a thorough survey and taxonomy of the datasets, metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territories, and gaps in the existing literature, while providing some insights for future research directions in this vital and rapidly evolving field. It also provides relevant code and datasets references. Through this comprehensive review, we hope to provide interested readers with pertinent references and insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and address the prevailing challenges in the field.
Abstract:Recent advancements in Large Language Models (LLMs) have been reshaping Natural Language Processing (NLP) task in several domains. Their use in the field of Human Resources (HR) has still room for expansions and could be beneficial for several time consuming tasks. Examples such as time-off submissions, medical claims filing, and access requests are noteworthy, but they are by no means the sole instances. However, the aforementioned developments must grapple with the pivotal challenge of constructing a high-quality training dataset. On one hand, most conversation datasets are solving problems for customers not employees. On the other hand, gathering conversations with HR could raise privacy concerns. To solve it, we introduce HR-Multiwoz, a fully-labeled dataset of 550 conversations spanning 10 HR domains to evaluate LLM Agent. Our work has the following contributions: (1) It is the first labeled open-sourced conversation dataset in the HR domain for NLP research. (2) It provides a detailed recipe for the data generation procedure along with data analysis and human evaluations. The data generation pipeline is transferable and can be easily adapted for labeled conversation data generation in other domains. (3) The proposed data-collection pipeline is mostly based on LLMs with minimal human involvement for annotation, which is time and cost-efficient.
Abstract:Researches indicate that text-dependent speaker verification (TD-SV) often outperforms text-independent verification (TI-SV) in short speech scenarios. However, collecting large-scale fixed text speech data is challenging, and as speech length increases, factors like sentence rhythm and pauses affect TDSV's sensitivity to text sequence. Based on these factors, We propose the hypothesis that strategies such as more fine-grained pooling methods on time scales and decoupled representations of speech speaker embedding and text embedding are more suitable for TD-SV. We have introduced an end-to-end TD-SV system based on a dataset comprising longer Chinese numerical string texts. It contains a text embedding network, a speaker embedding network, and back-end fusion. First, we recorded a dataset consisting of long Chinese numerical text named SHAL, which is publicly available on the Open-SLR website. We addressed the issue of dataset scarcity by augmenting it using Tacotron2 and HiFi-GAN. Next, we introduced a dual representation of speech with text embedding and speaker embedding. In the text embedding network, we employed an enhanced Transformer and introduced a triple loss that includes text classification loss, CTC loss, and decoder loss. For the speaker embedding network, we enhanced a sliding window attentive statistics pooling (SWASP), combined with attentive statistics pooling (ASP) to create a multi-scale pooling method. Finally, we fused text embedding and speaker embedding. Our pooling methods achieved an equal error rate (EER) performance improvement of 49.2% on Hi-Mia and 75.0% on SHAL, respectively.