Abstract:Multimodal large language models (MLLMs) have revolutionized vision-language understanding but are vulnerable to multimodal jailbreak attacks, where adversaries meticulously craft inputs to elicit harmful or inappropriate responses. We propose UniGuard, a novel multimodal safety guardrail that jointly considers the unimodal and cross-modal harmful signals. UniGuard is trained such that the likelihood of generating harmful responses in a toxic corpus is minimized, and can be seamlessly applied to any input prompt during inference with minimal computational costs. Extensive experiments demonstrate the generalizability of UniGuard across multiple modalities and attack strategies. It demonstrates impressive generalizability across multiple state-of-the-art MLLMs, including LLaVA, Gemini Pro, GPT-4, MiniGPT-4, and InstructBLIP, thereby broadening the scope of our solution.
Abstract:The rapid evolution of Large Language Models (LLMs) offers promising potential to alleviate the global scarcity of mental health professionals. However, LLMs' alignment with essential mental health counseling competencies remains understudied. We introduce CounselingBench, a novel NCMHCE-based benchmark evaluating LLMs across five key mental health counseling competencies. Testing 22 general-purpose and medical-finetuned LLMs, we find frontier models exceed minimum thresholds but fall short of expert-level performance, with significant variations: they excel in Intake, Assessment & Diagnosis yet struggle with Core Counseling Attributes and Professional Practice & Ethics. Medical LLMs surprisingly underperform generalist models accuracy-wise, while at the same time producing slightly higher-quality justifications but making more context-related errors. Our findings highlight the complexities of developing AI systems for mental health counseling, particularly for competencies requiring empathy and contextual understanding. We found that frontier LLMs perform at a level exceeding the minimal required level of aptitude for all key mental health counseling competencies, but fall short of expert-level performance, and that current medical LLMs do not significantly improve upon generalist models in mental health counseling competencies. This underscores the critical need for specialized, mental health counseling-specific fine-tuned LLMs that rigorously aligns with core competencies combined with appropriate human supervision before any responsible real-world deployment can be considered.
Abstract:The remarkable capabilities of large language models (LLMs) in language understanding and generation have not rendered them immune to hallucinations. LLMs can still generate plausible-sounding but factually incorrect or fabricated information. As LLM-empowered chatbots become popular, laypeople may frequently ask health-related queries and risk falling victim to these LLM hallucinations, resulting in various societal and healthcare implications. In this work, we conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients. We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics and the corresponding hallucinated responses from LLMs with labeled hallucination types and hallucinated text spans. We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations. We also employ three groups of evaluators -- medical experts, LLMs, and laypeople -- to study who are more vulnerable to these medical hallucinations. We find that LLMs are much worse than the experts. They also perform no better than laypeople and even worse in few cases in detecting hallucinations. To fill this gap, we propose expert-in-the-loop approach to improve hallucination detection through LLMs by infusing expert reasoning. We observe significant performance gains for all the LLMs with an average macro-F1 improvement of 6.3 percentage points for GPT-4.
Abstract:Text-aware recommender systems incorporate rich textual features, such as titles and descriptions, to generate item recommendations for users. The use of textual features helps mitigate cold-start problems, and thus, such recommender systems have attracted increased attention. However, we argue that the dependency on item descriptions makes the recommender system vulnerable to manipulation by adversarial sellers on e-commerce platforms. In this paper, we explore the possibility of such manipulation by proposing a new text rewriting framework to attack text-aware recommender systems. We show that the rewriting attack can be exploited by sellers to unfairly uprank their products, even though the adversarially rewritten descriptions are perceived as realistic by human evaluators. Methodologically, we investigate two different variations to carry out text rewriting attacks: (1) two-phase fine-tuning for greater attack performance, and (2) in-context learning for higher text rewriting quality. Experiments spanning 3 different datasets and 4 existing approaches demonstrate that recommender systems exhibit vulnerability against the proposed text rewriting attack. Our work adds to the existing literature around the robustness of recommender systems, while highlighting a new dimension of vulnerability in the age of large-scale automated text generation.
Abstract:Violence-provoking speech -- speech that implicitly or explicitly promotes violence against the members of the targeted community, contributed to a massive surge in anti-Asian crimes during the pandemic. While previous works have characterized and built tools for detecting other forms of harmful speech, like fear speech and hate speech, our work takes a community-centric approach to studying anti-Asian violence-provoking speech. Using data from ~420k Twitter posts spanning a 3-year duration (January 1, 2020 to February 1, 2023), we develop a codebook to characterize anti-Asian violence-provoking speech and collect a community-crowdsourced dataset to facilitate its large-scale detection using state-of-the-art classifiers. We contrast the capabilities of natural language processing classifiers, ranging from BERT-based to LLM-based classifiers, in detecting violence-provoking speech with their capabilities to detect anti-Asian hateful speech. In contrast to prior work that has demonstrated the effectiveness of such classifiers in detecting hateful speech ($F_1 = 0.89$), our work shows that accurate and reliable detection of violence-provoking speech is a challenging task ($F_1 = 0.69$). We discuss the implications of our findings, particularly the need for proactive interventions to support Asian communities during public health crises. The resources related to the study are available at https://claws-lab.github.io/violence-provoking-speech/.
Abstract:Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the "epidemic" of mental health misinformation online.
Abstract:We developed DyGETViz, a novel framework for effectively visualizing dynamic graphs (DGs) that are ubiquitous across diverse real-world systems. This framework leverages recent advancements in discrete-time dynamic graph (DTDG) models to adeptly handle the temporal dynamics inherent in dynamic graphs. DyGETViz effectively captures both micro- and macro-level structural shifts within these graphs, offering a robust method for representing complex and massive dynamic graphs. The application of DyGETViz extends to a diverse array of domains, including ethology, epidemiology, finance, genetics, linguistics, communication studies, social studies, and international relations. Through its implementation, DyGETViz has revealed or confirmed various critical insights. These include the diversity of content sharing patterns and the degree of specialization within online communities, the chronological evolution of lexicons across decades, and the distinct trajectories exhibited by aging-related and non-related genes. Importantly, DyGETViz enhances the accessibility of scientific findings to non-domain experts by simplifying the complexities of dynamic graphs. Our framework is released as an open-source Python package for use across diverse disciplines. Our work not only addresses the ongoing challenges in visualizing and analyzing DTDG models but also establishes a foundational framework for future investigations into dynamic graph representation and analysis across various disciplines.
Abstract:Collaborative filtering (CF) methods for recommendation systems have been extensively researched, ranging from matrix factorization and autoencoder-based to graph filtering-based methods. Recently, lightweight methods that require almost no training have been recently proposed to reduce overall computation. However, existing methods still have room to improve the trade-offs among accuracy, efficiency, and robustness. In particular, there are no well-designed closed-form studies for \emph{balanced} CF in terms of the aforementioned trade-offs. In this paper, we design SVD-AE, a simple yet effective singular vector decomposition (SVD)-based linear autoencoder, whose closed-form solution can be defined based on SVD for CF. SVD-AE does not require iterative training processes as its closed-form solution can be calculated at once. Furthermore, given the noisy nature of the rating matrix, we explore the robustness against such noisy interactions of existing CF methods and our SVD-AE. As a result, we demonstrate that our simple design choice based on truncated SVD can be used to strengthen the noise robustness of the recommendation while improving efficiency. Code is available at https://github.com/seoyoungh/svd-ae.
Abstract:Multimodal large language models (MLLMs) like LLaVA and GPT-4(V) enable general-purpose conversations about images with the language modality. As off-the-shelf MLLMs may have limited capabilities on images from domains like dermatology and agriculture, they must be fine-tuned to unlock domain-specific applications. The prevalent architecture of current open-source MLLMs comprises two major modules: an image-language (cross-modal) projection network and a large language model. It is desirable to understand the roles of these two modules in modeling domain-specific visual attributes to inform the design of future models and streamline the interpretability efforts on the current models. To this end, via experiments on 4 datasets and under 2 fine-tuning settings, we find that as the MLLM is fine-tuned, it indeed gains domain-specific visual capabilities, but the updates do not lead to the projection extracting relevant domain-specific visual attributes. Our results indicate that the domain-specific visual attributes are modeled by the LLM, even when only the projection is fine-tuned. Through this study, we offer a potential reinterpretation of the role of cross-modal projections in MLLM architectures. Projection webpage: https://claws-lab.github.io/projection-in-MLLMs/
Abstract:The Fair Graph Anomaly Detection (FairGAD) problem aims to accurately detect anomalous nodes in an input graph while ensuring fairness and avoiding biased predictions against individuals from sensitive subgroups such as gender or political leanings. Fairness in graphs is particularly crucial in anomaly detection areas such as misinformation detection in search/ranking systems, where decision outcomes can significantly affect individuals. However, the current literature does not comprehensively discuss this problem, nor does it provide realistic datasets that encompass actual graph structures, anomaly labels, and sensitive attributes for research in FairGAD. To bridge this gap, we introduce a formal definition of the FairGAD problem and present two novel graph datasets constructed from the globally prominent social media platforms Reddit and Twitter. These datasets comprise 1.2 million and 400,000 edges associated with 9,000 and 47,000 nodes, respectively, and leverage political leanings as sensitive attributes and misinformation spreaders as anomaly labels. We demonstrate that our FairGAD datasets significantly differ from the synthetic datasets used currently by the research community. These new datasets offer significant values for FairGAD by providing realistic data that captures the intricacies of social networks. Using our datasets, we investigate the performance-fairness trade-off in eleven existing GAD and non-graph AD methods on five state-of-the-art fairness methods, which sheds light on their effectiveness and limitations in addressing the FairGAD problem.