Abstract:Recent breakthroughs in large language models (LLMs) have generated both interest and concern about their potential adoption as accessible information sources or communication tools across different domains. In public health -- where stakes are high and impacts extend across populations -- adopting LLMs poses unique challenges that require thorough evaluation. However, structured approaches for assessing potential risks in public health remain under-explored. To address this gap, we conducted focus groups with health professionals and health issue experiencers to unpack their concerns, situated across three distinct and critical public health issues that demand high-quality information: vaccines, opioid use disorder, and intimate partner violence. We synthesize participants' perspectives into a risk taxonomy, distinguishing and contextualizing the potential harms LLMs may introduce when positioned alongside traditional health communication. This taxonomy highlights four dimensions of risk in individual behaviors, human-centered care, information ecosystem, and technology accountability. For each dimension, we discuss specific risks and example reflection questions to help practitioners adopt a risk-reflexive approach. This work offers a shared vocabulary and reflection tool for experts in both computing and public health to collaboratively anticipate, evaluate, and mitigate risks in deciding when to employ LLM capabilities (or not) and how to mitigate harm when they are used.
Abstract:The rapid evolution of Large Language Models (LLMs) offers promising potential to alleviate the global scarcity of mental health professionals. However, LLMs' alignment with essential mental health counseling competencies remains understudied. We introduce CounselingBench, a novel NCMHCE-based benchmark evaluating LLMs across five key mental health counseling competencies. Testing 22 general-purpose and medical-finetuned LLMs, we find frontier models exceed minimum thresholds but fall short of expert-level performance, with significant variations: they excel in Intake, Assessment & Diagnosis yet struggle with Core Counseling Attributes and Professional Practice & Ethics. Medical LLMs surprisingly underperform generalist models accuracy-wise, while at the same time producing slightly higher-quality justifications but making more context-related errors. Our findings highlight the complexities of developing AI systems for mental health counseling, particularly for competencies requiring empathy and contextual understanding. We found that frontier LLMs perform at a level exceeding the minimal required level of aptitude for all key mental health counseling competencies, but fall short of expert-level performance, and that current medical LLMs do not significantly improve upon generalist models in mental health counseling competencies. This underscores the critical need for specialized, mental health counseling-specific fine-tuned LLMs that rigorously aligns with core competencies combined with appropriate human supervision before any responsible real-world deployment can be considered.
Abstract:Adverse Drug Reactions (ADRs) from psychiatric medications are the leading cause of hospitalizations among mental health patients. With healthcare systems and online communities facing limitations in resolving ADR-related issues, Large Language Models (LLMs) have the potential to fill this gap. Despite the increasing capabilities of LLMs, past research has not explored their capabilities in detecting ADRs related to psychiatric medications or in providing effective harm reduction strategies. To address this, we introduce the Psych-ADR benchmark and the Adverse Drug Reaction Response Assessment (ADRA) framework to systematically evaluate LLM performance in detecting ADR expressions and delivering expert-aligned mitigation strategies. Our analyses show that LLMs struggle with understanding the nuances of ADRs and differentiating between types of ADRs. While LLMs align with experts in terms of expressed emotions and tone of the text, their responses are more complex, harder to read, and only 70.86% aligned with expert strategies. Furthermore, they provide less actionable advice by a margin of 12.32% on average. Our work provides a comprehensive benchmark and evaluation framework for assessing LLMs in strategy-driven tasks within high-risk domains.
Abstract:The remarkable capabilities of large language models (LLMs) in language understanding and generation have not rendered them immune to hallucinations. LLMs can still generate plausible-sounding but factually incorrect or fabricated information. As LLM-empowered chatbots become popular, laypeople may frequently ask health-related queries and risk falling victim to these LLM hallucinations, resulting in various societal and healthcare implications. In this work, we conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients. We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics and the corresponding hallucinated responses from LLMs with labeled hallucination types and hallucinated text spans. We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations. We also employ three groups of evaluators -- medical experts, LLMs, and laypeople -- to study who are more vulnerable to these medical hallucinations. We find that LLMs are much worse than the experts. They also perform no better than laypeople and even worse in few cases in detecting hallucinations. To fill this gap, we propose expert-in-the-loop approach to improve hallucination detection through LLMs by infusing expert reasoning. We observe significant performance gains for all the LLMs with an average macro-F1 improvement of 6.3 percentage points for GPT-4.
Abstract:Expressing stressful experiences in words is proven to improve mental and physical health, but individuals often disengage with writing interventions as they struggle to organize their thoughts and emotions. Reflective prompts have been used to provide direction, and large language models (LLMs) have demonstrated the potential to provide tailored guidance. Current systems often limit users' flexibility to direct their reflections. We thus present ExploreSelf, an LLM-driven application designed to empower users to control their reflective journey. ExploreSelf allows users to receive adaptive support through dynamically generated questions. Through an exploratory study with 19 participants, we examine how participants explore and reflect on personal challenges using ExploreSelf. Our findings demonstrate that participants valued the balance between guided support and freedom to control their reflective journey, leading to deeper engagement and insight. Building on our findings, we discuss implications for designing LLM-driven tools that promote user empowerment through effective reflective practices.
Abstract:Violence-provoking speech -- speech that implicitly or explicitly promotes violence against the members of the targeted community, contributed to a massive surge in anti-Asian crimes during the pandemic. While previous works have characterized and built tools for detecting other forms of harmful speech, like fear speech and hate speech, our work takes a community-centric approach to studying anti-Asian violence-provoking speech. Using data from ~420k Twitter posts spanning a 3-year duration (January 1, 2020 to February 1, 2023), we develop a codebook to characterize anti-Asian violence-provoking speech and collect a community-crowdsourced dataset to facilitate its large-scale detection using state-of-the-art classifiers. We contrast the capabilities of natural language processing classifiers, ranging from BERT-based to LLM-based classifiers, in detecting violence-provoking speech with their capabilities to detect anti-Asian hateful speech. In contrast to prior work that has demonstrated the effectiveness of such classifiers in detecting hateful speech ($F_1 = 0.89$), our work shows that accurate and reliable detection of violence-provoking speech is a challenging task ($F_1 = 0.69$). We discuss the implications of our findings, particularly the need for proactive interventions to support Asian communities during public health crises. The resources related to the study are available at https://claws-lab.github.io/violence-provoking-speech/.
Abstract:Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the "epidemic" of mental health misinformation online.
Abstract:People experiencing severe distress increasingly use Large Language Model (LLM) chatbots as mental health support tools. Discussions on social media have described how engagements were lifesaving for some, but evidence suggests that general-purpose LLM chatbots also have notable risks that could endanger the welfare of users if not designed responsibly. In this study, we investigate the lived experiences of people who have used LLM chatbots for mental health support. We build on interviews with 21 individuals from globally diverse backgrounds to analyze how users create unique support roles for their chatbots, fill in gaps in everyday care, and navigate associated cultural limitations when seeking support from chatbots. We ground our analysis in psychotherapy literature around effective support, and introduce the concept of therapeutic alignment, or aligning AI with therapeutic values for mental health contexts. Our study offers recommendations for how designers can approach the ethical and effective use of LLM chatbots and other AI mental health support tools in mental health care.
Abstract:Large language models (LLMs) are transforming the ways the general public accesses and consumes information. Their influence is particularly pronounced in pivotal sectors like healthcare, where lay individuals are increasingly appropriating LLMs as conversational agents for everyday queries. While LLMs demonstrate impressive language understanding and generation proficiencies, concerns regarding their safety remain paramount in these high-stake domains. Moreover, the development of LLMs is disproportionately focused on English. It remains unclear how these LLMs perform in the context of non-English languages, a gap that is critical for ensuring equity in the real-world use of these systems.This paper provides a framework to investigate the effectiveness of LLMs as multi-lingual dialogue systems for healthcare queries. Our empirically-derived framework XlingEval focuses on three fundamental criteria for evaluating LLM responses to naturalistic human-authored health-related questions: correctness, consistency, and verifiability. Through extensive experiments on four major global languages, including English, Spanish, Chinese, and Hindi, spanning three expert-annotated large health Q&A datasets, and through an amalgamation of algorithmic and human-evaluation strategies, we found a pronounced disparity in LLM responses across these languages, indicating a need for enhanced cross-lingual capabilities. We further propose XlingHealth, a cross-lingual benchmark for examining the multilingual capabilities of LLMs in the healthcare context. Our findings underscore the pressing need to bolster the cross-lingual capacities of these models, and to provide an equitable information ecosystem accessible to all.
Abstract:Telehealth is a valuable tool for primary health care (PHC), where depression is a common condition. PHC is the first point of contact for most people with depression, but about 25% of diagnoses made by PHC physicians are inaccurate. Many other barriers also hinder depression detection and treatment in PHC. Artificial intelligence (AI) may help reduce depression misdiagnosis in PHC and improve overall diagnosis and treatment outcomes. Telehealth consultations often have video issues, such as poor connectivity or dropped calls. Audio-only telehealth is often more practical for lower-income patients who may lack stable internet connections. Thus, our study focused on using audio data to predict depression risk. The objectives were to: 1) Collect audio data from 24 people (12 with depression and 12 without mental health or major health condition diagnoses); 2) Build a machine learning model to predict depression risk. TPOT, an autoML tool, was used to select the best machine learning algorithm, which was the K-nearest neighbors classifier. The selected model had high performance in classifying depression risk (Precision: 0.98, Recall: 0.93, F1-Score: 0.96). These findings may lead to a range of tools to help screen for and treat depression. By developing tools to detect depression risk, patients can be routed to AI-driven chatbots for initial screenings. Partnerships with a range of stakeholders are crucial to implementing these solutions. Moreover, ethical considerations, especially around data privacy and potential biases in AI models, need to be at the forefront of any AI-driven intervention in mental health care.