Richard
Abstract:Graph Neural Networks (GNNs) have been widely adopted for their ability to compute expressive node representations in graph datasets. However, serving GNNs on large graphs is challenging due to the high communication, computation, and memory overheads of constructing and executing computation graphs, which represent information flow across large neighborhoods. Existing approximation techniques in training can mitigate the overheads but, in serving, still lead to high latency and/or accuracy loss. To this end, we propose OMEGA, a system that enables low-latency GNN serving for large graphs with minimal accuracy loss through two key ideas. First, OMEGA employs selective recomputation of precomputed embeddings, which allows for reusing precomputed computation subgraphs while selectively recomputing a small fraction to minimize accuracy loss. Second, we develop computation graph parallelism, which reduces communication overhead by parallelizing the creation and execution of computation graphs across machines. Our evaluation with large graph datasets and GNN models shows that OMEGA significantly outperforms state-of-the-art techniques.
Abstract:Scene Graph Generation (SGG) research has suffered from two fundamental challenges: the long-tailed predicate distribution and semantic ambiguity between predicates. These challenges lead to a bias towards head predicates in SGG models, favoring dominant general predicates while overlooking fine-grained predicates. In this paper, we address the challenges of SGG by framing it as multi-label classification problem with partial annotation, where relevant labels of fine-grained predicates are missing. Under the new frame, we propose Retrieval-Augmented Scene Graph Generation (RA-SGG), which identifies potential instances to be multi-labeled and enriches the single-label with multi-labels that are semantically similar to the original label by retrieving relevant samples from our established memory bank. Based on augmented relations (i.e., discovered multi-labels), we apply multi-prototype learning to train our SGG model. Several comprehensive experiments have demonstrated that RA-SGG outperforms state-of-the-art baselines by up to 3.6% on VG and 5.9% on GQA, particularly in terms of F@K, showing that RA-SGG effectively alleviates the issue of biased prediction caused by the long-tailed distribution and semantic ambiguity of predicates.
Abstract:Recent advances in foundation models have established scaling laws that enable the development of larger models to achieve enhanced performance, motivating extensive research into large-scale recommendation models. However, simply increasing the model size in recommendation systems, even with large amounts of data, does not always result in the expected performance improvements. In this paper, we propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models, each with its own embedding table, to capture unique feature interaction patterns. Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning, where models iteratively refine their predictions. To dynamically balance contributions from each model, we introduce a confidence-based fusion mechanism using general softmax, where model confidence is computed via negation entropy. This design ensures that more confident models have a greater influence on the final prediction while benefiting from the complementary strengths of other models. We validate our framework on three public datasets (AmazonElectronics, TaobaoAds, and KuaiVideo) as well as a large-scale industrial dataset from Meta, demonstrating its superior performance over individual models and state-of-the-art baselines. Additionally, we conduct further experiments on the Criteo and Avazu datasets to compare our method with the multi-embedding paradigm. Our results show that our framework achieves comparable or better performance with smaller embedding sizes, offering a scalable and efficient solution for CTR prediction tasks.
Abstract:Multimodal large language models (MLLMs) have revolutionized vision-language understanding but are vulnerable to multimodal jailbreak attacks, where adversaries meticulously craft inputs to elicit harmful or inappropriate responses. We propose UniGuard, a novel multimodal safety guardrail that jointly considers the unimodal and cross-modal harmful signals. UniGuard is trained such that the likelihood of generating harmful responses in a toxic corpus is minimized, and can be seamlessly applied to any input prompt during inference with minimal computational costs. Extensive experiments demonstrate the generalizability of UniGuard across multiple modalities and attack strategies. It demonstrates impressive generalizability across multiple state-of-the-art MLLMs, including LLaVA, Gemini Pro, GPT-4, MiniGPT-4, and InstructBLIP, thereby broadening the scope of our solution.
Abstract:3D point clouds are increasingly vital for applications like autonomous driving and robotics, yet the raw data captured by sensors often suffer from noise and sparsity, creating challenges for downstream tasks. Consequently, point cloud upsampling becomes essential for improving density and uniformity, with recent approaches showing promise by projecting randomly generated query points onto the underlying surface of sparse point clouds. However, these methods often result in outliers, non-uniformity, and difficulties in handling regions with high curvature and intricate structures. In this work, we address these challenges by introducing the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions through a curvature-based sampling technique that selectively targets high-curvature areas. Additionally, we incorporate a curriculum learning strategy that leverages the curvature distribution within the point cloud to naturally assess the sample difficulty, enabling curriculum learning on point cloud data for the first time. The experimental results demonstrate that our approach significantly outperforms existing methods, achieving high-quality, dense point clouds with superior accuracy and detail.
Abstract:Recent advances in 3D object detection leveraging multi-view cameras have demonstrated their practical and economical value in various challenging vision tasks. However, typical supervised learning approaches face challenges in achieving satisfactory adaptation toward unseen and unlabeled target datasets (\ie, direct transfer) due to the inevitable geometric misalignment between the source and target domains. In practice, we also encounter constraints on resources for training models and collecting annotations for the successful deployment of 3D object detectors. In this paper, we propose Unified Domain Generalization and Adaptation (UDGA), a practical solution to mitigate those drawbacks. We first propose Multi-view Overlap Depth Constraint that leverages the strong association between multi-view, significantly alleviating geometric gaps due to perspective view changes. Then, we present a Label-Efficient Domain Adaptation approach to handle unfamiliar targets with significantly fewer amounts of labels (\ie, 1$\%$ and 5$\%)$, while preserving well-defined source knowledge for training efficiency. Overall, UDGA framework enables stable detection performance in both source and target domains, effectively bridging inevitable domain gaps, while demanding fewer annotations. We demonstrate the robustness of UDGA with large-scale benchmarks: nuScenes, Lyft, and Waymo, where our framework outperforms the current state-of-the-art methods.
Abstract:While guide dogs offer essential mobility assistance, their high cost, limited availability, and care requirements make them inaccessible to most blind or low vision (BLV) individuals. Recent advances in quadruped robots provide a scalable solution for mobility assistance, but many current designs fail to meet real-world needs due to a lack of understanding of handler and guide dog interactions. In this paper, we share lessons learned from developing a human-centered guide dog robot, addressing challenges such as optimal hardware design, robust navigation, and informative scene description for user adoption. By conducting semi-structured interviews and human experiments with BLV individuals, guide-dog handlers, and trainers, we identified key design principles to improve safety, trust, and usability in robotic mobility aids. Our findings lay the building blocks for future development of guide dog robots, ultimately enhancing independence and quality of life for BLV individuals.
Abstract:Robotic mobility aids for blind and low-vision (BLV) individuals rely heavily on deep learning-based vision models specialized for various navigational tasks. However, the performance of these models is often constrained by the availability and diversity of real-world datasets, which are challenging to collect in sufficient quantities for different tasks. In this study, we investigate the effectiveness of synthetic data, generated using Unreal Engine 4, for training robust vision models for this safety-critical application. Our findings demonstrate that synthetic data can enhance model performance across multiple tasks, showcasing both its potential and its limitations when compared to real-world data. We offer valuable insights into optimizing synthetic data generation for developing robotic mobility aids. Additionally, we publicly release our generated synthetic dataset to support ongoing research in assistive technologies for BLV individuals, available at https://hchlhwang.github.io/SToP.
Abstract:Large-scale image-text pre-trained models enable zero-shot classification and provide consistent accuracy across various data distributions. Nonetheless, optimizing these models in downstream tasks typically requires fine-tuning, which reduces generalization to out-of-distribution (OOD) data and demands extensive computational resources. We introduce Robust Adapter (R-Adapter), a novel method for fine-tuning zero-shot models to downstream tasks while simultaneously addressing both these issues. Our method integrates lightweight modules into the pre-trained model and employs novel self-ensemble techniques to boost OOD robustness and reduce storage expenses substantially. Furthermore, we propose MPM-NCE loss designed for fine-tuning on vision-language downstream tasks. It ensures precise alignment of multiple image-text pairs and discriminative feature learning. By extending the benchmark for robust fine-tuning beyond classification to include diverse tasks such as cross-modal retrieval and open vocabulary segmentation, we demonstrate the broad applicability of R-Adapter. Our extensive experiments demonstrate that R-Adapter achieves state-of-the-art performance across a diverse set of tasks, tuning only 13% of the parameters of the CLIP encoders.
Abstract:Vision-language (VL) models often exhibit a limited understanding of complex expressions of visual objects (e.g., attributes, shapes, and their relations), given complex and diverse language queries. Traditional approaches attempt to improve VL models using hard negative synthetic text, but their effectiveness is limited. In this paper, we harness the exceptional compositional understanding capabilities of generative foundational models. We introduce a novel method for structured synthetic data generation aimed at enhancing the compositional understanding of VL models in language-based object detection. Our framework generates densely paired positive and negative triplets (image, text descriptions, and bounding boxes) in both image and text domains. By leveraging these synthetic triplets, we transform 'weaker' VL models into 'stronger' models in terms of compositional understanding, a process we call "Weak-to-Strong Compositional Learning" (WSCL). To achieve this, we propose a new compositional contrastive learning formulation that discovers semantics and structures in complex descriptions from synthetic triplets. As a result, VL models trained with our synthetic data generation exhibit a significant performance boost in the Omnilabel benchmark by up to +5AP and the D3 benchmark by +6.9AP upon existing baselines.