Richard
Abstract:Multimodal large language models (MLLMs) have revolutionized vision-language understanding but are vulnerable to multimodal jailbreak attacks, where adversaries meticulously craft inputs to elicit harmful or inappropriate responses. We propose UniGuard, a novel multimodal safety guardrail that jointly considers the unimodal and cross-modal harmful signals. UniGuard is trained such that the likelihood of generating harmful responses in a toxic corpus is minimized, and can be seamlessly applied to any input prompt during inference with minimal computational costs. Extensive experiments demonstrate the generalizability of UniGuard across multiple modalities and attack strategies. It demonstrates impressive generalizability across multiple state-of-the-art MLLMs, including LLaVA, Gemini Pro, GPT-4, MiniGPT-4, and InstructBLIP, thereby broadening the scope of our solution.
Abstract:3D point clouds are increasingly vital for applications like autonomous driving and robotics, yet the raw data captured by sensors often suffer from noise and sparsity, creating challenges for downstream tasks. Consequently, point cloud upsampling becomes essential for improving density and uniformity, with recent approaches showing promise by projecting randomly generated query points onto the underlying surface of sparse point clouds. However, these methods often result in outliers, non-uniformity, and difficulties in handling regions with high curvature and intricate structures. In this work, we address these challenges by introducing the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions through a curvature-based sampling technique that selectively targets high-curvature areas. Additionally, we incorporate a curriculum learning strategy that leverages the curvature distribution within the point cloud to naturally assess the sample difficulty, enabling curriculum learning on point cloud data for the first time. The experimental results demonstrate that our approach significantly outperforms existing methods, achieving high-quality, dense point clouds with superior accuracy and detail.
Abstract:Recent advances in 3D object detection leveraging multi-view cameras have demonstrated their practical and economical value in various challenging vision tasks. However, typical supervised learning approaches face challenges in achieving satisfactory adaptation toward unseen and unlabeled target datasets (\ie, direct transfer) due to the inevitable geometric misalignment between the source and target domains. In practice, we also encounter constraints on resources for training models and collecting annotations for the successful deployment of 3D object detectors. In this paper, we propose Unified Domain Generalization and Adaptation (UDGA), a practical solution to mitigate those drawbacks. We first propose Multi-view Overlap Depth Constraint that leverages the strong association between multi-view, significantly alleviating geometric gaps due to perspective view changes. Then, we present a Label-Efficient Domain Adaptation approach to handle unfamiliar targets with significantly fewer amounts of labels (\ie, 1$\%$ and 5$\%)$, while preserving well-defined source knowledge for training efficiency. Overall, UDGA framework enables stable detection performance in both source and target domains, effectively bridging inevitable domain gaps, while demanding fewer annotations. We demonstrate the robustness of UDGA with large-scale benchmarks: nuScenes, Lyft, and Waymo, where our framework outperforms the current state-of-the-art methods.
Abstract:While guide dogs offer essential mobility assistance, their high cost, limited availability, and care requirements make them inaccessible to most blind or low vision (BLV) individuals. Recent advances in quadruped robots provide a scalable solution for mobility assistance, but many current designs fail to meet real-world needs due to a lack of understanding of handler and guide dog interactions. In this paper, we share lessons learned from developing a human-centered guide dog robot, addressing challenges such as optimal hardware design, robust navigation, and informative scene description for user adoption. By conducting semi-structured interviews and human experiments with BLV individuals, guide-dog handlers, and trainers, we identified key design principles to improve safety, trust, and usability in robotic mobility aids. Our findings lay the building blocks for future development of guide dog robots, ultimately enhancing independence and quality of life for BLV individuals.
Abstract:Robotic mobility aids for blind and low-vision (BLV) individuals rely heavily on deep learning-based vision models specialized for various navigational tasks. However, the performance of these models is often constrained by the availability and diversity of real-world datasets, which are challenging to collect in sufficient quantities for different tasks. In this study, we investigate the effectiveness of synthetic data, generated using Unreal Engine 4, for training robust vision models for this safety-critical application. Our findings demonstrate that synthetic data can enhance model performance across multiple tasks, showcasing both its potential and its limitations when compared to real-world data. We offer valuable insights into optimizing synthetic data generation for developing robotic mobility aids. Additionally, we publicly release our generated synthetic dataset to support ongoing research in assistive technologies for BLV individuals, available at https://hchlhwang.github.io/SToP.
Abstract:Large-scale image-text pre-trained models enable zero-shot classification and provide consistent accuracy across various data distributions. Nonetheless, optimizing these models in downstream tasks typically requires fine-tuning, which reduces generalization to out-of-distribution (OOD) data and demands extensive computational resources. We introduce Robust Adapter (R-Adapter), a novel method for fine-tuning zero-shot models to downstream tasks while simultaneously addressing both these issues. Our method integrates lightweight modules into the pre-trained model and employs novel self-ensemble techniques to boost OOD robustness and reduce storage expenses substantially. Furthermore, we propose MPM-NCE loss designed for fine-tuning on vision-language downstream tasks. It ensures precise alignment of multiple image-text pairs and discriminative feature learning. By extending the benchmark for robust fine-tuning beyond classification to include diverse tasks such as cross-modal retrieval and open vocabulary segmentation, we demonstrate the broad applicability of R-Adapter. Our extensive experiments demonstrate that R-Adapter achieves state-of-the-art performance across a diverse set of tasks, tuning only 13% of the parameters of the CLIP encoders.
Abstract:Vision-language (VL) models often exhibit a limited understanding of complex expressions of visual objects (e.g., attributes, shapes, and their relations), given complex and diverse language queries. Traditional approaches attempt to improve VL models using hard negative synthetic text, but their effectiveness is limited. In this paper, we harness the exceptional compositional understanding capabilities of generative foundational models. We introduce a novel method for structured synthetic data generation aimed at enhancing the compositional understanding of VL models in language-based object detection. Our framework generates densely paired positive and negative triplets (image, text descriptions, and bounding boxes) in both image and text domains. By leveraging these synthetic triplets, we transform 'weaker' VL models into 'stronger' models in terms of compositional understanding, a process we call "Weak-to-Strong Compositional Learning" (WSCL). To achieve this, we propose a new compositional contrastive learning formulation that discovers semantics and structures in complex descriptions from synthetic triplets. As a result, VL models trained with our synthetic data generation exhibit a significant performance boost in the Omnilabel benchmark by up to +5AP and the D3 benchmark by +6.9AP upon existing baselines.
Abstract:Soccer kicking is a complex whole-body motion that requires intricate coordination of various motor actions. To accomplish such dynamic motion in a humanoid robot, the robot needs to simultaneously: 1) transfer high kinetic energy to the kicking leg, 2) maintain balance and stability of the entire body, and 3) manage the impact disturbance from the ball during the kicking moment. Prior studies on robotic soccer kicking often prioritized stability, leading to overly conservative quasi-static motions. In this work, we present a biomechanics-inspired control framework that leverages trajectory optimization and imitation learning to facilitate highly dynamic soccer kicks in humanoid robots. We conducted an in-depth analysis of human soccer kick biomechanics to identify key motion constraints. Based on this understanding, we designed kinodynamically feasible trajectories that are then used as a reference in imitation learning to develop a robust feedback control policy. We demonstrate the effectiveness of our approach through a simulation of an anthropomorphic 25 DoF bipedal humanoid robot, named PresToe, which is equipped with 7 DoF legs, including a unique actuated toe. Using our framework, PresToe can execute dynamic instep kicks, propelling the ball at speeds exceeding 11m/s in full dynamics simulation.
Abstract:Autonomous Vehicles (AV) and Advanced Driver Assistant Systems (ADAS) prioritize safety over comfort. The intertwining factors of safety and comfort emerge as pivotal elements in ensuring the effectiveness of Autonomous Driving (AD). Users often experience discomfort when AV or ADAS drive the vehicle on their behalf. Providing a personalized human-like AD experience, tailored to match users' unique driving styles while adhering to safety prerequisites, presents a significant opportunity to boost the acceptance of AVs. This paper proposes a novel approach, Neural Driving Style Transfer (NDST), inspired by Neural Style Transfer (NST), to address this issue. NDST integrates a Personalized Block (PB) into the conventional Baseline Driving Model (BDM), allowing for the transfer of a user's unique driving style while adhering to safety parameters. The PB serves as a self-configuring system, learning and adapting to an individual's driving behavior without requiring modifications to the BDM. This approach enables the personalization of AV models, aligning the driving style more closely with user preferences while ensuring baseline safety critical actuation. Two contrasting driving styles (Style A and Style B) were used to validate the proposed NDST methodology, demonstrating its efficacy in transferring personal driving styles to the AV system. Our work highlights the potential of NDST to enhance user comfort in AVs by providing a personalized and familiar driving experience. The findings affirm the feasibility of integrating NDST into existing AV frameworks to bridge the gap between safety and individualized driving styles, promoting wider acceptance and improved user experiences.
Abstract:Image dehazing, addressing atmospheric interference like fog and haze, remains a pervasive challenge crucial for robust vision applications such as surveillance and remote sensing under adverse visibility. While various methodologies have evolved from early works predicting transmission matrix and atmospheric light features to deep learning and dehazing networks, they innately prioritize dehazing quality metrics, neglecting the need for real-time applicability in time-sensitive domains like autonomous driving. This work introduces FALCON (Frequency Adjoint Link with CONtinuous density mask), a single-image dehazing system achieving state-of-the-art performance on both quality and speed. Particularly, we develop a novel bottleneck module, namely, Frequency Adjoint Link, operating in the frequency space to globally expand the receptive field with minimal growth in network size. Further, we leverage the underlying haze distribution based on the atmospheric scattering model via a Continuous Density Mask (CDM) which serves as a continuous-valued mask input prior and a differentiable auxiliary loss. Comprehensive experiments involving multiple state-of-the-art methods and ablation analysis demonstrate FALCON's exceptional performance in both dehazing quality and speed (i.e., >$180 frames-per-second), quantified by metrics such as FPS, PSNR, and SSIM.