OMRON SINIC X
Abstract:Building a large-scale figure QA dataset requires a considerable amount of work, from gathering and selecting figures to extracting attributes like text, numbers, and colors, and generating QAs. Although recent developments in LLMs have led to efforts to synthesize figures, most of these focus primarily on QA generation. Additionally, creating figures directly using LLMs often encounters issues such as code errors, similar-looking figures, and repetitive content in figures. To address this issue, we present SBSFigures (Stage-by-Stage Synthetic Figures), a dataset for pre-training figure QA. Our proposed pipeline enables the creation of chart figures with complete annotations of the visualized data and dense QA annotations without any manual annotation process. Our stage-by-stage pipeline makes it possible to create diverse topic and appearance figures efficiently while minimizing code errors. Our SBSFigures demonstrate a strong pre-training effect, making it possible to achieve efficient training with a limited amount of real-world chart data starting from our pre-trained weights.
Abstract:In materials science, finding crystal structures that have targeted properties is crucial. While recent methodologies such as Bayesian optimization and deep generative models have made some advances on this issue, these methods often face difficulties in adaptively incorporating various constraints, such as electrical neutrality and targeted properties optimization, while keeping the desired specific crystal structure. To address these challenges, we have developed the Simultaneous Multi-property Optimization using Adaptive Crystal Synthesizer (SMOACS), which utilizes state-of-the-art property prediction models and their gradients to directly optimize input crystal structures for targeted properties simultaneously. SMOACS enables the integration of adaptive constraints into the optimization process without necessitating model retraining. Thanks to this feature, SMOACS has succeeded in simultaneously optimizing targeted properties while maintaining perovskite structures, even with models trained on diverse crystal types. We have demonstrated the band gap optimization while meeting a challenging constraint, that is, maintaining electrical neutrality in large atomic configurations up to 135 atom sites, where the verification of the electrical neutrality is challenging. The properties of the most promising materials have been confirmed by density functional theory calculations.
Abstract:A college-level benchmark dataset for large language models (LLMs) in the materials science field, MaterialBENCH, is constructed. This dataset consists of problem-answer pairs, based on university textbooks. There are two types of problems: one is the free-response answer type, and the other is the multiple-choice type. Multiple-choice problems are constructed by adding three incorrect answers as choices to a correct answer, so that LLMs can choose one of the four as a response. Most of the problems for free-response answer and multiple-choice types overlap except for the format of the answers. We also conduct experiments using the MaterialBENCH on LLMs, including ChatGPT-3.5, ChatGPT-4, Bard (at the time of the experiments), and GPT-3.5 and GPT-4 with the OpenAI API. The differences and similarities in the performance of LLMs measured by the MaterialBENCH are analyzed and discussed. Performance differences between the free-response type and multiple-choice type in the same models and the influence of using system massages on multiple-choice problems are also studied. We anticipate that MaterialBENCH will encourage further developments of LLMs in reasoning abilities to solve more complicated problems and eventually contribute to materials research and discovery.
Abstract:Procedural video understanding is gaining attention in the vision and language community. Deep learning-based video analysis requires extensive data. Consequently, existing works often use web videos as training resources, making it challenging to query instructional contents from raw video observations. To address this issue, we propose a new dataset, COM Kitchens. The dataset consists of unedited overhead-view videos captured by smartphones, in which participants performed food preparation based on given recipes. Fixed-viewpoint video datasets often lack environmental diversity due to high camera setup costs. We used modern wide-angle smartphone lenses to cover cooking counters from sink to cooktop in an overhead view, capturing activity without in-person assistance. With this setup, we collected a diverse dataset by distributing smartphones to participants. With this dataset, we propose the novel video-to-text retrieval task Online Recipe Retrieval (OnRR) and new video captioning domain Dense Video Captioning on unedited Overhead-View videos (DVC-OV). Our experiments verified the capabilities and limitations of current web-video-based SOTA methods in handling these tasks.
Abstract:Scientific posters are used to present the contributions of scientific papers effectively in a graphical format. However, creating a well-designed poster that efficiently summarizes the core of a paper is both labor-intensive and time-consuming. A system that can automatically generate well-designed posters from scientific papers would reduce the workload of authors and help readers understand the outline of the paper visually. Despite the demand for poster generation systems, only a limited research has been conduced due to the lack of publicly available datasets. Thus, in this study, we built the SciPostLayout dataset, which consists of 7,855 scientific posters and manual layout annotations for layout analysis and generation. SciPostLayout also contains 100 scientific papers paired with the posters. All of the posters and papers in our dataset are under the CC-BY license and are publicly available. As benchmark tests for the collected dataset, we conducted experiments for layout analysis and generation utilizing existing computer vision models and found that both layout analysis and generation of posters using SciPostLayout are more challenging than with scientific papers. We also conducted experiments on generating layouts from scientific papers to demonstrate the potential of utilizing LLM as a scientific poster generation system. The dataset is publicly available at https://huggingface.co/datasets/omron-sinicx/scipostlayout_v2. The code is also publicly available at https://github.com/omron-sinicx/scipostlayout.
Abstract:Visual question answering aims to provide responses to natural language questions given visual input. Recently, visual programmatic models (VPMs), which generate executable programs to answer questions through large language models (LLMs), have attracted research interest. However, they often require long input prompts to provide the LLM with sufficient API usage details to generate relevant code. To address this limitation, we propose AdaCoder, an adaptive prompt compression framework for VPMs. AdaCoder operates in two phases: a compression phase and an inference phase. In the compression phase, given a preprompt that describes all API definitions in the Python language with example snippets of code, a set of compressed preprompts is generated, each depending on a specific question type. In the inference phase, given an input question, AdaCoder predicts the question type and chooses the appropriate corresponding compressed preprompt to generate code to answer the question. Notably, AdaCoder employs a single frozen LLM and pre-defined prompts, negating the necessity of additional training and maintaining adaptability across different powerful black-box LLMs such as GPT and Claude. In experiments, we apply AdaCoder to ViperGPT and demonstrate that it reduces token length by 71.1%, while maintaining or even improving the performance of visual question answering.
Abstract:Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally tractable formulation, interpreted as neural potential summation, that performs infinite interatomic potential summations in a deeply learned feature space. We then propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer. Compared to an existing Transformer-based model, the proposed model requires only 29.4% of the number of parameters, with minimal modifications to the original Transformer architecture. Despite the architectural simplicity, the proposed method outperforms state-of-the-art methods for various property regression tasks on the Materials Project and JARVIS-DFT datasets.
Abstract:This paper presents a Tri-branch Neural Fusion (TNF) approach designed for classifying multimodal medical images and tabular data. It also introduces two solutions to address the challenge of label inconsistency in multimodal classification. Traditional methods in multi-modality medical data classification often rely on single-label approaches, typically merging features from two distinct input modalities. This becomes problematic when features are mutually exclusive or labels differ across modalities, leading to reduced accuracy. To overcome this, our TNF approach implements a tri-branch framework that manages three separate outputs: one for image modality, another for tabular modality, and a third hybrid output that fuses both image and tabular data. The final decision is made through an ensemble method that integrates likelihoods from all three branches. We validate the effectiveness of TNF through extensive experiments, which illustrate its superiority over traditional fusion and ensemble methods in various convolutional neural networks and transformer-based architectures across multiple datasets.
Abstract:Large language models (LLM) learn diverse knowledge present in the large-scale training dataset via self-supervised training. Followed by instruction-tuning, LLM acquires the ability to return correct information for diverse questions. However, adapting these pre-trained LLMs to new target domains, such as different organizations or periods, for the question-answering (QA) task incurs a substantial annotation cost. To tackle this challenge, we propose a novel task, unsupervised LLM adaptation for question answering. In this task, we leverage a pre-trained LLM, a publicly available QA dataset (source data), and unlabeled documents from the target domain. Our goal is to learn LLM that can answer questions about the target domain. We introduce one synthetic and two real datasets to evaluate models fine-tuned on the source and target data, and reveal intriguing insights; (i) fine-tuned models exhibit the ability to provide correct answers for questions about the target domain even though they do not see any questions about the information described in the unlabeled documents, but (ii) they have difficulties in accessing information located in the middle or at the end of documents, and (iii) this challenge can be partially mitigated by replacing input tokens with random ones during adaptation.
Abstract:Symbolic Regression (SR) searches for mathematical expressions which best describe numerical datasets. This allows to circumvent interpretation issues inherent to artificial neural networks, but SR algorithms are often computationally expensive. This work proposes a new Transformer model aiming at Symbolic Regression particularly focused on its application for Scientific Discovery. We propose three encoder architectures with increasing flexibility but at the cost of column-permutation equivariance violation. Training results indicate that the most flexible architecture is required to prevent from overfitting. Once trained, we apply our best model to the SRSD datasets (Symbolic Regression for Scientific Discovery datasets) which yields state-of-the-art results using the normalized tree-based edit distance, at no extra computational cost.