Abstract:Scene Graph Generation (SGG) research has suffered from two fundamental challenges: the long-tailed predicate distribution and semantic ambiguity between predicates. These challenges lead to a bias towards head predicates in SGG models, favoring dominant general predicates while overlooking fine-grained predicates. In this paper, we address the challenges of SGG by framing it as multi-label classification problem with partial annotation, where relevant labels of fine-grained predicates are missing. Under the new frame, we propose Retrieval-Augmented Scene Graph Generation (RA-SGG), which identifies potential instances to be multi-labeled and enriches the single-label with multi-labels that are semantically similar to the original label by retrieving relevant samples from our established memory bank. Based on augmented relations (i.e., discovered multi-labels), we apply multi-prototype learning to train our SGG model. Several comprehensive experiments have demonstrated that RA-SGG outperforms state-of-the-art baselines by up to 3.6% on VG and 5.9% on GQA, particularly in terms of F@K, showing that RA-SGG effectively alleviates the issue of biased prediction caused by the long-tailed distribution and semantic ambiguity of predicates.
Abstract:Social graph-based fake news detection aims to identify news articles containing false information by utilizing social contexts, e.g., user information, tweets and comments. However, conventional methods are evaluated under less realistic scenarios, where the model has access to future knowledge on article-related and context-related data during training. In this work, we newly formalize a more realistic evaluation scheme that mimics real-world scenarios, where the data is temporality-aware and the detection model can only be trained on data collected up to a certain point in time. We show that the discriminative capabilities of conventional methods decrease sharply under this new setting, and further propose DAWN, a method more applicable to such scenarios. Our empirical findings indicate that later engagements (e.g., consuming or reposting news) contribute more to noisy edges that link real news-fake news pairs in the social graph. Motivated by this, we utilize feature representations of engagement earliness to guide an edge weight estimator to suppress the weights of such noisy edges, thereby enhancing the detection performance of DAWN. Through extensive experiments, we demonstrate that DAWN outperforms existing fake news detection methods under real-world environments. The source code is available at https://github.com/LeeJunmo/DAWN.
Abstract:Graph neural networks (GNN) are vulnerable to adversarial attacks, which aim to degrade the performance of GNNs through imperceptible changes on the graph. However, we find that in fact the prevalent meta-gradient-based attacks, which utilizes the gradient of the loss w.r.t the adjacency matrix, are biased towards training nodes. That is, their meta-gradient is determined by a training procedure of the surrogate model, which is solely trained on the training nodes. This bias manifests as an uneven perturbation, connecting two nodes when at least one of them is a labeled node, i.e., training node, while it is unlikely to connect two unlabeled nodes. However, these biased attack approaches are sub-optimal as they do not consider flipping edges between two unlabeled nodes at all. This means that they miss the potential attacked edges between unlabeled nodes that significantly alter the representation of a node. In this paper, we investigate the meta-gradients to uncover the root cause of the uneven perturbations of existing attacks. Based on our analysis, we propose a Meta-gradient-based attack method using contrastive surrogate objective (Metacon), which alleviates the bias in meta-gradient using a new surrogate loss. We conduct extensive experiments to show that Metacon outperforms existing meta gradient-based attack methods through benchmark datasets, while showing that alleviating the bias towards training nodes is effective in attacking the graph structure.
Abstract:The scene graph generation (SGG) task involves detecting objects within an image and predicting predicates that represent the relationships between the objects. However, in SGG benchmark datasets, each subject-object pair is annotated with a single predicate even though a single predicate may exhibit diverse semantics (i.e., semantic diversity), existing SGG models are trained to predict the one and only predicate for each pair. This in turn results in the SGG models to overlook the semantic diversity that may exist in a predicate, thus leading to biased predictions. In this paper, we propose a novel model-agnostic Semantic Diversity-aware Prototype-based Learning (DPL) framework that enables unbiased predictions based on the understanding of the semantic diversity of predicates. Specifically, DPL learns the regions in the semantic space covered by each predicate to distinguish among the various different semantics that a single predicate can represent. Extensive experiments demonstrate that our proposed model-agnostic DPL framework brings significant performance improvement on existing SGG models, and also effectively understands the semantic diversity of predicates.
Abstract:Recent studies have revealed that GNNs are vulnerable to adversarial attacks. To defend against such attacks, robust graph structure refinement (GSR) methods aim at minimizing the effect of adversarial edges based on node features, graph structure, or external information. However, we have discovered that existing GSR methods are limited by narrowassumptions, such as assuming clean node features, moderate structural attacks, and the availability of external clean graphs, resulting in the restricted applicability in real-world scenarios. In this paper, we propose a self-guided GSR framework (SG-GSR), which utilizes a clean sub-graph found within the given attacked graph itself. Furthermore, we propose a novel graph augmentation and a group-training strategy to handle the two technical challenges in the clean sub-graph extraction: 1) loss of structural information, and 2) imbalanced node degree distribution. Extensive experiments demonstrate the effectiveness of SG-GSR under various scenarios including non-targeted attacks, targeted attacks, feature attacks, e-commerce fraud, and noisy node labels. Our code is available at https://github.com/yeonjun-in/torch-SG-GSR.
Abstract:Scene graph generation (SGG) models have suffered from inherent problems regarding the benchmark datasets such as the long-tailed predicate distribution and missing annotation problems. In this work, we aim to alleviate the long-tailed problem of SGG by utilizing unannotated triplets. To this end, we introduce a Self-Training framework for SGG (ST-SGG) that assigns pseudo-labels for unannotated triplets based on which the SGG models are trained. While there has been significant progress in self-training for image recognition, designing a self-training framework for the SGG task is more challenging due to its inherent nature such as the semantic ambiguity and the long-tailed distribution of predicate classes. Hence, we propose a novel pseudo-labeling technique for SGG, called Class-specific Adaptive Thresholding with Momentum (CATM), which is a model-agnostic framework that can be applied to any existing SGG models. Furthermore, we devise a graph structure learner (GSL) that is beneficial when adopting our proposed self-training framework to the state-of-the-art message-passing neural network (MPNN)-based SGG models. Our extensive experiments verify the effectiveness of ST-SGG on various SGG models, particularly in enhancing the performance on fine-grained predicate classes.
Abstract:Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.
Abstract:Unsupervised GAD methods assume the lack of anomaly labels, i.e., whether a node is anomalous or not. One common observation we made from previous unsupervised methods is that they not only assume the absence of such anomaly labels, but also the absence of class labels (the class a node belongs to used in a general node classification task). In this work, we study the utility of class labels for unsupervised GAD; in particular, how they enhance the detection of structural anomalies. To this end, we propose a Class Label-aware Graph Anomaly Detection framework (CLAD) that utilizes a limited amount of labeled nodes to enhance the performance of unsupervised GAD. Extensive experiments on ten datasets demonstrate the superior performance of CLAD in comparison to existing unsupervised GAD methods, even in the absence of ground-truth class label information. The source code for CLAD is available at \url{https://github.com/jhkim611/CLAD}.
Abstract:Recent works demonstrate that GNN models are vulnerable to adversarial attacks, which refer to imperceptible perturbation on the graph structure and node features. Among various GNN models, graph contrastive learning (GCL) based methods specifically suffer from adversarial attacks due to their inherent design that highly depends on the self-supervision signals derived from the original graph, which however already contains noise when the graph is attacked. To achieve adversarial robustness against such attacks, existing methods adopt adversarial training (AT) to the GCL framework, which considers the attacked graph as an augmentation under the GCL framework. However, we find that existing adversarially trained GCL methods achieve robustness at the expense of not being able to preserve the node feature similarity. In this paper, we propose a similarity-preserving adversarial graph contrastive learning (SP-AGCL) framework that contrasts the clean graph with two auxiliary views of different properties (i.e., the node similarity-preserving view and the adversarial view). Extensive experiments demonstrate that SP-AGCL achieves a competitive performance on several downstream tasks, and shows its effectiveness in various scenarios, e.g., a network with adversarial attacks, noisy labels, and heterophilous neighbors. Our code is available at https://github.com/yeonjun-in/torch-SP-AGCL.
Abstract:Recently, molecular relational learning, whose goal is to predict the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. In this work, we propose CMRL that is robust to the distributional shift in molecular relational learning by detecting the core substructure that is causally related to chemical reactions. To do so, we first assume a causal relationship based on the domain knowledge of molecular sciences and construct a structural causal model (SCM) that reveals the relationship between variables. Based on the SCM, we introduce a novel conditional intervention framework whose intervention is conditioned on the paired molecule. With the conditional intervention framework, our model successfully learns from the causal substructure and alleviates the confounding effect of shortcut substructures that are spuriously correlated to chemical reactions. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the superiority of CMRL over state-of-the-art baseline models. Our code is available at https://github.com/Namkyeong/CMRL.