Abstract:Graph neural networks (GNNs) have achieved remarkable success in recommender systems by representing users and items based on their historical interactions. However, little attention was paid to GNN's vulnerability to exposure bias: users are exposed to a limited number of items so that a system only learns a biased view of user preference to result in suboptimal recommendation quality. Although inverse propensity weighting is known to recognize and alleviate exposure bias, it usually works on the final objective with the model outputs, whereas GNN can also be biased during neighbor aggregation. In this paper, we propose a simple but effective approach, neighbor aggregation via inverse propensity (Navip) for GNNs. Specifically, given a user-item bipartite graph, we first derive propensity score of each user-item interaction in the graph. Then, inverse of the propensity score with Laplacian normalization is applied to debias neighbor aggregation from exposure bias. We validate the effectiveness of our approach through our extensive experiments on two public and Amazon Alexa datasets where the performance enhances up to 14.2%.
Abstract:Generating representations that precisely reflect customers' behavior is an important task for providing personalized skill routing experience in Alexa. Currently, Dynamic Routing (DR) team, which is responsible for routing Alexa traffic to providers or skills, relies on two features to be served as personal signals: absolute traffic count and normalized traffic count of every skill usage per customer. Neither of them considers the network based structure for interactions between customers and skills, which contain richer information for customer preferences. In this work, we first build a heterogeneous edge attributed graph based customers' past interactions with the invoked skills, in which the user requests (utterances) are modeled as edges. Then we propose a graph convolutional network(GCN) based model, namely Personalized Dynamic Routing Feature Encoder(PDRFE), that generates personalized customer representations learned from the built graph. Compared with existing models, PDRFE is able to further capture contextual information in the graph convolutional function. The performance of our proposed model is evaluated by a downstream task, defect prediction, that predicts the defect label from the learned embeddings of customers and their triggered skills. We observe up to 41% improvements on the cross entropy metric for our proposed models compared to the baselines.