Abstract:Large Vision-Language Models (LVLMs) have demonstrated impressive multimodal reasoning capabilities, but they remain susceptible to hallucination, particularly object hallucination where non-existent objects or incorrect attributes are fabricated in generated descriptions. Existing detection methods achieve strong performance but rely heavily on expensive API calls and iterative LVLM-based validation, making them impractical for large-scale or offline use. To address these limitations, we propose CutPaste\&Find, a lightweight and training-free framework for detecting hallucinations in LVLM-generated outputs. Our approach leverages off-the-shelf visual and linguistic modules to perform multi-step verification efficiently without requiring LVLM inference. At the core of our framework is a Visual-aid Knowledge Base that encodes rich entity-attribute relationships and associated image representations. We introduce a scaling factor to refine similarity scores, mitigating the issue of suboptimal alignment values even for ground-truth image-text pairs. Comprehensive evaluations on benchmark datasets, including POPE and R-Bench, demonstrate that CutPaste\&Find achieves competitive hallucination detection performance while being significantly more efficient and cost-effective than previous methods.
Abstract:In AI-facilitated teaching, leveraging various query styles to interpret abstract text descriptions is crucial for ensuring high-quality teaching. However, current retrieval models primarily focus on natural text-image retrieval, making them insufficiently tailored to educational scenarios due to the ambiguities in the retrieval process. In this paper, we propose a diverse expression retrieval task tailored to educational scenarios, supporting retrieval based on multiple query styles and expressions. We introduce the STEM Education Retrieval Dataset (SER), which contains over 24,000 query pairs of different styles, and the Uni-Retrieval, an efficient and style-diversified retrieval vision-language model based on prompt tuning. Uni-Retrieval extracts query style features as prototypes and builds a continuously updated Prompt Bank containing prompt tokens for diverse queries. This bank can updated during test time to represent domain-specific knowledge for different subject retrieval scenarios. Our framework demonstrates scalability and robustness by dynamically retrieving prompt tokens based on prototype similarity, effectively facilitating learning for unknown queries. Experimental results indicate that Uni-Retrieval outperforms existing retrieval models in most retrieval tasks. This advancement provides a scalable and precise solution for diverse educational needs.
Abstract:We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Abstract:Previous research on multimodal entity linking (MEL) has primarily employed contrastive learning as the primary objective. However, using the rest of the batch as negative samples without careful consideration, these studies risk leveraging easy features and potentially overlook essential details that make entities unique. In this work, we propose JD-CCL (Jaccard Distance-based Conditional Contrastive Learning), a novel approach designed to enhance the ability to match multimodal entity linking models. JD-CCL leverages meta-information to select negative samples with similar attributes, making the linking task more challenging and robust. Additionally, to address the limitations caused by the variations within the visual modality among mentions and entities, we introduce a novel method, CVaCPT (Contextual Visual-aid Controllable Patch Transform). It enhances visual representations by incorporating multi-view synthetic images and contextual textual representations to scale and shift patch representations. Experimental results on benchmark MEL datasets demonstrate the strong effectiveness of our approach.
Abstract:Data contamination hinders fair LLM evaluation by introducing test data into newer models' training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs' training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs' cutoff time and demonstrate AntiLeak-Bench effectively overcomes this challenge.
Abstract:LLM-based autonomous agents have demonstrated outstanding performance in solving complex industrial tasks. However, in the pursuit of carbon neutrality and high-performance renewable energy systems, existing AI-assisted design automation faces significant limitations in explainability, scalability, and usability. To address these challenges, we propose LP-COMDA, an LLM-based, physics-informed autonomous agent that automates the modulation design of power converters in Power Electronics Systems with minimal human supervision. Unlike traditional AI-assisted approaches, LP-COMDA contains an LLM-based planner that gathers and validates design specifications through a user-friendly chat interface. The planner then coordinates with physics-informed design and optimization tools to iteratively generate and refine modulation designs autonomously. Through the chat interface, LP-COMDA provides an explainable design process, presenting explanations and charts. Experiments show that LP-COMDA outperforms all baseline methods, achieving a 63.2% reduction in error compared to the second-best benchmark method in terms of standard mean absolute error. Furthermore, empirical studies with 20 experts conclude that design time with LP-COMDA is over 33 times faster than conventional methods, showing its significant improvement on design efficiency over the current processes.
Abstract:With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.
Abstract:Parameter-efficient fine-tuning (PEFT) can bridge the gap between large language models (LLMs) and downstream tasks. However, PEFT has been proven vulnerable to malicious attacks. Research indicates that poisoned LLMs, even after PEFT, retain the capability to activate internalized backdoors when input samples contain predefined triggers. In this paper, we introduce a novel weak-to-strong unlearning algorithm to defend against backdoor attacks based on feature alignment knowledge distillation, named W2SDefense. Specifically, we first train a small-scale language model through full-parameter fine-tuning to serve as the clean teacher model. Then, this teacher model guides the large-scale poisoned student model in unlearning the backdoor, leveraging PEFT. Theoretical analysis suggests that W2SDefense has the potential to enhance the student model's ability to unlearn backdoor features, preventing the activation of the backdoor. We conduct experiments on text classification tasks involving three state-of-the-art language models and three different backdoor attack algorithms. Our empirical results demonstrate the outstanding performance of W2SDefense in defending against backdoor attacks without compromising model performance.
Abstract:This paper presents a method to evaluate the alignment between the decision-making logic of Large Language Models (LLMs) and human cognition in a case study on legal LLMs. Unlike traditional evaluations on language generation results, we propose to evaluate the correctness of the detailed decision-making logic of an LLM behind its seemingly correct outputs, which represents the core challenge for an LLM to earn human trust. To this end, we quantify the interactions encoded by the LLM as primitive decision-making logic, because recent theoretical achievements have proven several mathematical guarantees of the faithfulness of the interaction-based explanation. We design a set of metrics to evaluate the detailed decision-making logic of LLMs. Experiments show that even when the language generation results appear correct, a significant portion of the internal inference logic contains notable issues.
Abstract:Despite being widely applied due to their exceptional capabilities, Large Language Models (LLMs) have been proven to be vulnerable to backdoor attacks. These attacks introduce targeted vulnerabilities into LLMs by poisoning training samples and full-parameter fine-tuning. However, this kind of backdoor attack is limited since they require significant computational resources, especially as the size of LLMs increases. Besides, parameter-efficient fine-tuning (PEFT) offers an alternative but the restricted parameter updating may impede the alignment of triggers with target labels. In this study, we first verify that backdoor attacks with PEFT may encounter challenges in achieving feasible performance. To address these issues and improve the effectiveness of backdoor attacks with PEFT, we propose a novel backdoor attack algorithm from weak to strong based on contrastive knowledge distillation (W2SAttack). Specifically, we poison small-scale language models through full-parameter fine-tuning to serve as the teacher model. The teacher model then covertly transfers the backdoor to the large-scale student model through contrastive knowledge distillation, which employs PEFT. Theoretical analysis reveals that W2SAttack has the potential to augment the effectiveness of backdoor attacks. We demonstrate the superior performance of W2SAttack on classification tasks across four language models, four backdoor attack algorithms, and two different architectures of teacher models. Experimental results indicate success rates close to 100% for backdoor attacks targeting PEFT.