Abstract:Retrieval-augmented generation systems rely on effective document retrieval capabilities. By design, conventional sparse or dense retrievers face challenges in multi-hop retrieval scenarios. In this paper, we present GeAR, which advances RAG performance through two key innovations: (i) graph expansion, which enhances any conventional base retriever, such as BM25, and (ii) an agent framework that incorporates graph expansion. Our evaluation demonstrates GeAR's superior retrieval performance on three multi-hop question answering datasets. Additionally, our system achieves state-of-the-art results with improvements exceeding 10% on the challenging MuSiQue dataset, while requiring fewer tokens and iterations compared to other multi-step retrieval systems.
Abstract:In response to the call for agent-based solutions that leverage the ever-increasing capabilities of the deep models' ecosystem, we introduce Hive -- a comprehensive solution for selecting appropriate models and subsequently planning a set of atomic actions to satisfy the end-users' instructions. Hive operates over sets of models and, upon receiving natural language instructions (i.e. user queries), schedules and executes explainable plans of atomic actions. These actions can involve one or more of the available models to achieve the overall task, while respecting end-users specific constraints. Notably, Hive handles tasks that involve multi-modal inputs and outputs, enabling it to handle complex, real-world queries. Our system is capable of planning complex chains of actions while guaranteeing explainability, using an LLM-based formal logic backbone empowered by PDDL operations. We introduce the MuSE benchmark in order to offer a comprehensive evaluation of the multi-modal capabilities of agent systems. Our findings show that our framework redefines the state-of-the-art for task selection, outperforming other competing systems that plan operations across multiple models while offering transparency guarantees while fully adhering to user constraints.
Abstract:We focus on Text-to-SQL semantic parsing from the perspective of Large Language Models. Motivated by challenges related to the size of commercial database schemata and the deployability of business intelligence solutions, we propose an approach that dynamically retrieves input database information and uses abstract syntax trees to select few-shot examples for in-context learning. Furthermore, we investigate the extent to which an in-parallel semantic parser can be leveraged for generating $\textit{approximated}$ versions of the expected SQL queries, to support our retrieval. We take this approach to the extreme--we adapt a model consisting of less than $500$M parameters, to act as an extremely efficient approximator, enhancing it with the ability to process schemata in a parallelised manner. We apply our approach to monolingual and cross-lingual benchmarks for semantic parsing, showing improvements over state-of-the-art baselines. Comprehensive experiments highlight the contribution of modules involved in this retrieval-augmented generation setting, revealing interesting directions for future work.