Abstract:In recent advancements, large language models (LLMs) have exhibited proficiency in code generation and chain-of-thought reasoning, laying the groundwork for tackling automatic formal planning tasks. This study evaluates the potential of LLMs to understand and generate Planning Domain Definition Language (PDDL), an essential representation in artificial intelligence planning. We conduct an extensive analysis across 20 distinct models spanning 7 major LLM families, both commercial and open-source. Our comprehensive evaluation sheds light on the zero-shot LLM capabilities of parsing, generating, and reasoning with PDDL. Our findings indicate that while some models demonstrate notable effectiveness in handling PDDL, others pose limitations in more complex scenarios requiring nuanced planning knowledge. These results highlight the promise and current limitations of LLMs in formal planning tasks, offering insights into their application and guiding future efforts in AI-driven planning paradigms.
Abstract:In response to the call for agent-based solutions that leverage the ever-increasing capabilities of the deep models' ecosystem, we introduce Hive -- a comprehensive solution for selecting appropriate models and subsequently planning a set of atomic actions to satisfy the end-users' instructions. Hive operates over sets of models and, upon receiving natural language instructions (i.e. user queries), schedules and executes explainable plans of atomic actions. These actions can involve one or more of the available models to achieve the overall task, while respecting end-users specific constraints. Notably, Hive handles tasks that involve multi-modal inputs and outputs, enabling it to handle complex, real-world queries. Our system is capable of planning complex chains of actions while guaranteeing explainability, using an LLM-based formal logic backbone empowered by PDDL operations. We introduce the MuSE benchmark in order to offer a comprehensive evaluation of the multi-modal capabilities of agent systems. Our findings show that our framework redefines the state-of-the-art for task selection, outperforming other competing systems that plan operations across multiple models while offering transparency guarantees while fully adhering to user constraints.