Abstract:In public safety and social life, the task of Clothes-Changing Person Re-Identification (CC-ReID) has become increasingly significant. However, this task faces considerable challenges due to appearance changes caused by clothing alterations. Addressing this issue, this paper proposes an innovative method for disentangled feature extraction, effectively extracting discriminative features from pedestrian images that are invariant to clothing. This method leverages pedestrian parsing techniques to identify and retain features closely associated with individual identity while disregarding the variable nature of clothing attributes. Furthermore, this study introduces a gated channel attention mechanism, which, by adjusting the network's focus, aids the model in more effectively learning and emphasizing features critical for pedestrian identity recognition. Extensive experiments conducted on two standard CC-ReID datasets validate the effectiveness of the proposed approach, with performance surpassing current leading solutions. The Top-1 accuracy under clothing change scenarios on the PRCC and VC-Clothes datasets reached 64.8% and 83.7%, respectively.
Abstract:Large language models (LLMs) have gained human trust due to their capabilities and helpfulness. However, this in turn may allow LLMs to affect users' mindsets by manipulating language. It is termed as gaslighting, a psychological effect. In this work, we aim to investigate the vulnerability of LLMs under prompt-based and fine-tuning-based gaslighting attacks. Therefore, we propose a two-stage framework DeepCoG designed to: 1) elicit gaslighting plans from LLMs with the proposed DeepGaslighting prompting template, and 2) acquire gaslighting conversations from LLMs through our Chain-of-Gaslighting method. The gaslighting conversation dataset along with a corresponding safe dataset is applied to fine-tuning-based attacks on open-source LLMs and anti-gaslighting safety alignment on these LLMs. Experiments demonstrate that both prompt-based and fine-tuning-based attacks transform three open-source LLMs into gaslighters. In contrast, we advanced three safety alignment strategies to strengthen (by 12.05%) the safety guardrail of LLMs. Our safety alignment strategies have minimal impacts on the utility of LLMs. Empirical studies indicate that an LLM may be a potential gaslighter, even if it passed the harmfulness test on general dangerous queries.
Abstract:In the past decade, significant strides in deep learning have led to numerous groundbreaking applications. Despite these advancements, the understanding of the high generalizability of deep learning, especially in such an over-parametrized space, remains limited. Successful applications are often considered as empirical rather than scientific achievements. For instance, deep neural networks' (DNNs) internal representations, decision-making mechanism, absence of overfitting in an over-parametrized space, high generalizability, etc., remain less understood. This paper delves into the loss landscape of DNNs through the lens of spin glass in statistical physics, i.e. a system characterized by a complex energy landscape with numerous metastable states, to better understand how DNNs work. We investigated a single hidden layer Rectified Linear Unit (ReLU) neural network model, and introduced several protocols to examine the analogy between DNNs (trained with datasets including MNIST and CIFAR10) and spin glass. Specifically, we used (1) random walk in the parameter space of DNNs to unravel the structures in their loss landscape; (2) a permutation-interpolation protocol to study the connection between copies of identical regions in the loss landscape due to the permutation symmetry in the hidden layers; (3) hierarchical clustering to reveal the hierarchy among trained solutions of DNNs, reminiscent of the so-called Replica Symmetry Breaking (RSB) phenomenon (i.e. the Parisi solution) in analogy to spin glass; (4) finally, we examine the relationship between the degree of the ruggedness of the loss landscape of the DNN and its generalizability, showing an improvement of flattened minima.
Abstract:The proliferation of fake news has had far-reaching implications on politics, the economy, and society at large. While Fake news detection methods have been employed to mitigate this issue, they primarily depend on two essential elements: the quality and relevance of the evidence, and the effectiveness of the verdict prediction mechanism. Traditional methods, which often source information from static repositories like Wikipedia, are limited by outdated or incomplete data, particularly for emerging or rare claims. Large Language Models (LLMs), known for their remarkable reasoning and generative capabilities, introduce a new frontier for fake news detection. However, like traditional methods, LLM-based solutions also grapple with the limitations of stale and long-tail knowledge. Additionally, retrieval-enhanced LLMs frequently struggle with issues such as low-quality evidence retrieval and context length constraints. To address these challenges, we introduce a novel, retrieval-augmented LLMs framework--the first of its kind to automatically and strategically extract key evidence from web sources for claim verification. Employing a multi-round retrieval strategy, our framework ensures the acquisition of sufficient, relevant evidence, thereby enhancing performance. Comprehensive experiments across three real-world datasets validate the framework's superiority over existing methods. Importantly, our model not only delivers accurate verdicts but also offers human-readable explanations to improve result interpretability.
Abstract:There is a considerable body of work on data cleaning which employs various principles to rectify erroneous data and transform a dirty dataset into a cleaner one. One of prevalent approaches is probabilistic methods, including Bayesian methods. However, existing probabilistic methods often assume a simplistic distribution (e.g., Gaussian distribution), which is frequently underfitted in practice, or they necessitate experts to provide a complex prior distribution (e.g., via a programming language). This requirement is both labor-intensive and costly, rendering these methods less suitable for real-world applications. In this paper, we propose BClean, a Bayesian Cleaning system that features automatic Bayesian network construction and user interaction. We recast the data cleaning problem as a Bayesian inference that fully exploits the relationships between attributes in the observed dataset and any prior information provided by users. To this end, we present an automatic Bayesian network construction method that extends a structure learning-based functional dependency discovery method with similarity functions to capture the relationships between attributes. Furthermore, our system allows users to modify the generated Bayesian network in order to specify prior information or correct inaccuracies identified by the automatic generation process. We also design an effective scoring model (called the compensative scoring model) necessary for the Bayesian inference. To enhance the efficiency of data cleaning, we propose several approximation strategies for the Bayesian inference, including graph partitioning, domain pruning, and pre-detection. By evaluating on both real-world and synthetic datasets, we demonstrate that BClean is capable of achieving an F-measure of up to 0.9 in data cleaning, outperforming existing Bayesian methods by 2% and other data cleaning methods by 15%.
Abstract:Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.
Abstract:Perception is necessary for autonomous navigation in an unknown area crowded with obstacles. It's challenging for a robot to navigate safely without any sensors that can sense the environment, resulting in a $\textit{blind}$ robot, and becomes more difficult when comes to a group of robots. However, it could be costly to equip all robots with expensive perception or SLAM systems. In this paper, we propose a novel system named $\textbf{ColAG}$, to solve the problem of autonomous navigation for a group of $\textit{blind}$ UGVs by introducing cooperation with one UAV, which is the only robot that has full perception capabilities in the group. The UAV uses SLAM for its odometry and mapping while sharing this information with UGVs via limited relative pose estimation. The UGVs plan their trajectories in the received map and predict possible failures caused by the uncertainty of its wheel odometry and unknown risky areas. The UAV dynamically schedules waypoints to prevent UGVs from collisions, formulated as a Vehicle Routing Problem with Time Windows to optimize the UAV's trajectories and minimize time when UGVs have to wait to guarantee safety. We validate our system through extensive simulation with up to 7 UGVs and real-world experiments with 3 UGVs.
Abstract:While large language models (LLMs) such as ChatGPT and PaLM have demonstrated remarkable performance in various language understanding and generation tasks, their capabilities in complex reasoning and intricate knowledge utilization still fall short of human-level proficiency. Recent studies have established the effectiveness of prompts in steering LLMs towards generating desired outputs. Building on these insights, we introduce a novel framework that harnesses the potential of large-scale pre-trained language models, to iteratively enhance performance of the LLMs. Our framework incorporates three components: \textit{Normal CoT}, a \textit{Convincer}, and an \textit{Answerer}. It processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, refines the reasoning, and ultimately produces a new solution. Experimental results on the 7 datasets of miscellaneous problems validate the efficacy of the Self-Convince framework, achieving substantial improvements compared to the baselines. This study contributes to the burgeoning body of research focused on integrating pre-trained language models with tailored prompts and iterative refinement processes to augment their performance in complex tasks.
Abstract:The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern due to their ability to effectively respond to freetext queries with certain professional knowledge. This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process, with the aim of providing an overview of the development roadmap from traditional Pretrained Language Models (PLMs) to LLMs. Specifically, we first explore the potential of LLMs to enhance the efficiency and effectiveness of various Healthcare applications highlighting both the strengths and limitations. Secondly, we conduct a comparison between the previous PLMs and the latest LLMs, as well as comparing various LLMs with each other. Then we summarize related Healthcare training data, training methods, optimization strategies, and usage. Finally, the unique concerns associated with deploying LLMs in Healthcare settings are investigated, particularly regarding fairness, accountability, transparency and ethics. Our survey provide a comprehensive investigation from perspectives of both computer science and Healthcare specialty. Besides the discussion about Healthcare concerns, we supports the computer science community by compiling a collection of open source resources, such as accessible datasets, the latest methodologies, code implementations, and evaluation benchmarks in the Github. Summarily, we contend that a significant paradigm shift is underway, transitioning from PLMs to LLMs. This shift encompasses a move from discriminative AI approaches to generative AI approaches, as well as a shift from model-centered methodologies to datacentered methodologies.
Abstract:The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.