Abstract:Controlling human motion based on text presents an important challenge in computer vision. Traditional approaches often rely on holistic action descriptions for motion synthesis, which struggle to capture subtle movements of local body parts. This limitation restricts the ability to isolate and manipulate specific movements. To address this, we propose a novel motion representation that decomposes motion into distinct body joint group movements and interactions from a kinematic perspective. We design an automatic dataset collection pipeline that enhances the existing text-motion benchmark by incorporating fine-grained local joint-group motion and interaction descriptions. To bridge the gap between text and motion domains, we introduce a hierarchical motion semantics approach that progressively fuses joint-level interaction information into the global action-level semantics for modality alignment. With this hierarchy, we introduce a coarse-to-fine motion synthesis procedure for various generation and editing downstream applications. Our quantitative and qualitative experiments demonstrate that the proposed formulation enhances text-motion retrieval by improving joint-spatial understanding, and enables more precise joint-motion generation and control. Project Page: {\small\url{https://andypinxinliu.github.io/KinMo/}}
Abstract:Expressive speech synthesis aims to generate speech that captures a wide range of para-linguistic features, including emotion and articulation, though current research primarily emphasizes emotional aspects over the nuanced articulatory features mastered by professional voice actors. Inspired by this, we explore expressive speech synthesis through the lens of articulatory phonetics. Specifically, we define a framework with three dimensions: Glottalization, Tenseness, and Resonance (GTR), to guide the synthesis at the voice production level. With this framework, we record a high-quality speech dataset named GTR-Voice, featuring 20 Chinese sentences articulated by a professional voice actor across 125 distinct GTR combinations. We verify the framework and GTR annotations through automatic classification and listening tests, and demonstrate precise controllability along the GTR dimensions on two fine-tuned expressive TTS models. We open-source the dataset and TTS models.
Abstract:Expressive speech synthesis aims to generate speech that captures a wide range of para-linguistic features, including emotion and articulation, though current research primarily emphasizes emotional aspects over the nuanced articulatory features mastered by professional voice actors. Inspired by this, we explore expressive speech synthesis through the lens of articulatory phonetics. Specifically, we define a framework with three dimensions: Glottalization, Tenseness, and Resonance (GTR), to guide the synthesis at the voice production level. With this framework, we record a high-quality speech dataset named GTR-Voice, featuring 20 Chinese sentences articulated by a professional voice actor across 125 distinct GTR combinations. We verify the framework and GTR annotations through automatic classification and listening tests, and demonstrate precise controllability along the GTR dimensions on two fine-tuned expressive TTS models. We open-source the dataset and TTS models.
Abstract:In this study, we investigate the capabilities and inherent biases of advanced large language models (LLMs) such as GPT-3.5 and GPT-4 in the context of debate evaluation. We discover that LLM's performance exceeds humans and surpasses the performance of state-of-the-art methods fine-tuned on extensive datasets in debate evaluation. We additionally explore and analyze biases present in LLMs, including positional bias, lexical bias, order bias, which may affect their evaluative judgments. Our findings reveal a consistent bias in both GPT-3.5 and GPT-4 towards the second candidate response presented, attributed to prompt design. We also uncover lexical biases in both GPT-3.5 and GPT-4, especially when label sets carry connotations such as numerical or sequential, highlighting the critical need for careful label verbalizer selection in prompt design. Additionally, our analysis indicates a tendency of both models to favor the debate's concluding side as the winner, suggesting an end-of-discussion bias.
Abstract:The one-shot talking-head generation learns to synthesize a talking-head video with one source portrait image under the driving of same or different identity video. Usually these methods require plane-based pixel transformations via Jacobin matrices or facial image warps for novel poses generation. The constraints of using a single image source and pixel displacements often compromise the clarity of the synthesized images. Some methods try to improve the quality of synthesized videos by introducing additional super-resolution modules, but this will undoubtedly increase computational consumption and destroy the original data distribution. In this work, we propose an adaptive high-quality talking-head video generation method, which synthesizes high-resolution video without additional pre-trained modules. Specifically, inspired by existing super-resolution methods, we down-sample the one-shot source image, and then adaptively reconstruct high-frequency details via an encoder-decoder module, resulting in enhanced video clarity. Our method consistently improves the quality of generated videos through a straightforward yet effective strategy, substantiated by quantitative and qualitative evaluations. The code and demo video are available on: \url{https://github.com/Songluchuan/AdaSR-TalkingHead/}.
Abstract:Artistic video portrait generation is a significant and sought-after task in the fields of computer graphics and vision. While various methods have been developed that integrate NeRFs or StyleGANs with instructional editing models for creating and editing drivable portraits, these approaches face several challenges. They often rely heavily on large datasets, require extensive customization processes, and frequently result in reduced image quality. To address the above problems, we propose the Efficient Monotonic Video Style Avatar (Emo-Avatar) through deferred neural rendering that enhances StyleGAN's capacity for producing dynamic, drivable portrait videos. We proposed a two-stage deferred neural rendering pipeline. In the first stage, we utilize few-shot PTI initialization to initialize the StyleGAN generator through several extreme poses sampled from the video to capture the consistent representation of aligned faces from the target portrait. In the second stage, we propose a Laplacian pyramid for high-frequency texture sampling from UV maps deformed by dynamic flow of expression for motion-aware texture prior integration to provide torso features to enhance StyleGAN's ability to generate complete and upper body for portrait video rendering. Emo-Avatar reduces style customization time from hours to merely 5 minutes compared with existing methods. In addition, Emo-Avatar requires only a single reference image for editing and employs region-aware contrastive learning with semantic invariant CLIP guidance, ensuring consistent high-resolution output and identity preservation. Through both quantitative and qualitative assessments, Emo-Avatar demonstrates superior performance over existing methods in terms of training efficiency, rendering quality and editability in self- and cross-reenactment.
Abstract:Recent years have witnessed considerable achievements in facial avatar reconstruction with neural volume rendering. Despite notable advancements, the reconstruction of complex and dynamic head movements from monocular videos still suffers from capturing and restoring fine-grained details. In this work, we propose a novel approach, named Tri$^2$-plane, for monocular photo-realistic volumetric head avatar reconstructions. Distinct from the existing works that rely on a single tri-plane deformation field for dynamic facial modeling, the proposed Tri$^2$-plane leverages the principle of feature pyramids and three top-to-down lateral connections tri-planes for details improvement. It samples and renders facial details at multiple scales, transitioning from the entire face to specific local regions and then to even more refined sub-regions. Moreover, we incorporate a camera-based geometry-aware sliding window method as an augmentation in training, which improves the robustness beyond the canonical space, with a particular improvement in cross-identity generation capabilities. Experimental outcomes indicate that the Tri$^2$-plane not only surpasses existing methodologies but also achieves superior performance across both quantitative metrics and qualitative assessments through experiments.