Abstract:Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation
Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable progress in visual understanding. This impressive leap raises a compelling question: how can language models, initially trained solely on linguistic data, effectively interpret and process visual content? This paper aims to address this question with systematic investigation across 4 model families and 4 model scales, uncovering a unique class of attention heads that focus specifically on visual content. Our analysis reveals a strong correlation between the behavior of these attention heads, the distribution of attention weights, and their concentration on visual tokens within the input. These findings enhance our understanding of how LLMs adapt to multimodal tasks, demonstrating their potential to bridge the gap between textual and visual understanding. This work paves the way for the development of AI systems capable of engaging with diverse modalities.
Abstract:The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.
Abstract:Text-guided diffusion models have revolutionized generative tasks by producing high-fidelity content from text descriptions. They have also enabled an editing paradigm where concepts can be replaced through text conditioning (e.g., a dog to a tiger). In this work, we explore a novel approach: instead of replacing a concept, can we enhance or suppress the concept itself? Through an empirical study, we identify a trend where concepts can be decomposed in text-guided diffusion models. Leveraging this insight, we introduce ScalingConcept, a simple yet effective method to scale decomposed concepts up or down in real input without introducing new elements. To systematically evaluate our approach, we present the WeakConcept-10 dataset, where concepts are imperfect and need to be enhanced. More importantly, ScalingConcept enables a variety of novel zero-shot applications across image and audio domains, including tasks such as canonical pose generation and generative sound highlighting or removal.
Abstract:As the demand for high-quality training data escalates, researchers have increasingly turned to generative models to create synthetic data, addressing data scarcity and enabling continuous model improvement. However, reliance on self-generated data introduces a critical question: Will this practice amplify bias in future models? While most research has focused on overall performance, the impact on model bias, particularly subgroup bias, remains underexplored. In this work, we investigate the effects of the generated data on image classification tasks, with a specific focus on bias. We develop a practical simulation environment that integrates a self-consuming loop, where the generative model and classification model are trained synergistically. Hundreds of experiments are conducted on Colorized MNIST, CIFAR-20/100, and Hard ImageNet datasets to reveal changes in fairness metrics across generations. In addition, we provide a conjecture to explain the bias dynamics when training models on continuously augmented datasets across generations. Our findings contribute to the ongoing debate on the implications of synthetic data for fairness in real-world applications.
Abstract:The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/
Abstract:In this paper, we introduce a novel task called language-guided joint audio-visual editing. Given an audio and image pair of a sounding event, this task aims at generating new audio-visual content by editing the given sounding event conditioned on the language guidance. For instance, we can alter the background environment of a sounding object while keeping its appearance unchanged, or we can add new sounds contextualized to the visual content. To address this task, we propose a new diffusion-based framework for joint audio-visual editing and introduce two key ideas. Firstly, we propose a one-shot adaptation approach to tailor generative diffusion models for audio-visual content editing. With as few as one audio-visual sample, we jointly transfer the audio and vision diffusion models to the target domain. After fine-tuning, our model enables consistent generation of this audio-visual sample. Secondly, we introduce a cross-modal semantic enhancement approach. We observe that when using language as content editing guidance, the vision branch may overlook editing requirements. This phenomenon, termed catastrophic neglect, hampers audio-visual alignment during content editing. We therefore enhance semantic consistency between language and vision to mitigate this issue. Extensive experiments validate the effectiveness of our method in language-based audio-visual editing and highlight its superiority over several baseline approaches. We recommend that readers visit our project page for more details: https://liangsusan-git.github.io/project/avedit/.
Abstract:In the past year, the capabilities of Multimodal Large Language Models (MLLMs) have significantly improved across various aspects. However, constrained by the quadratic growth of computation in LLMs as the number of tokens increases, efficiency has become a bottleneck for further scaling MLLMs. Although recent efforts have been made to prune visual tokens or use more lightweight LLMs to reduce computation, the problem of quadratic growth in computation with the increase of visual tokens still persists. To address this, we propose a novel approach: instead of reducing the input visual tokens for LLMs, we focus on pruning vision-related computations within the LLMs. After pruning, the computation growth in the LLM is no longer quadratic with the increase of visual tokens, but linear. Surprisingly, we found that after applying such extensive pruning, the capabilities of MLLMs are comparable with the original one and even superior on some benchmarks with only 25% of the computation. This finding opens up the possibility for MLLMs to incorporate much denser visual tokens. Additionally, based on this finding, we further analyzed some architectural design deficiencies in existing MLLMs and proposed promising improvements. To the best of our knowledge, this is the first study to investigate the computational redundancy in the LLM's vision component of MLLMs. Code and checkpoints will be released soon.
Abstract:The rapid evolution of egocentric video analysis brings new insights into understanding human activities and intentions from a first-person perspective. Despite this progress, the fragmentation in tasks like action recognition, procedure learning, and moment retrieval, \etc, coupled with inconsistent annotations and isolated model development, hinders a holistic interpretation of video content. In response, we introduce the EAGLE (Egocentric AGgregated Language-video Engine) model and the EAGLE-400K dataset to provide a unified framework that integrates various egocentric video understanding tasks. EAGLE-400K, the \textit{first} large-scale instruction-tuning dataset tailored for egocentric video, features 400K diverse samples to enhance a broad spectrum of tasks from activity recognition to procedure knowledge learning. Moreover, EAGLE, a strong video multimodal large language model (MLLM), is designed to effectively capture both spatial and temporal information. In addition, we propose a set of evaluation metrics designed to facilitate a thorough assessment of MLLM for egocentric video understanding. Our extensive experiments demonstrate EAGLE's superior performance over existing models, highlighting its ability to balance task-specific understanding with holistic video interpretation. With EAGLE, we aim to pave the way for research opportunities and practical applications in real-world scenarios.
Abstract:Video saliency prediction aims to identify the regions in a video that attract human attention and gaze, driven by bottom-up features from the video and top-down processes like memory and cognition. Among these top-down influences, language plays a crucial role in guiding attention by shaping how visual information is interpreted. Existing methods primarily focus on modeling perceptual information while neglecting the reasoning process facilitated by language, where ranking cues are crucial outcomes of this process and practical guidance for saliency prediction. In this paper, we propose CaRDiff (Caption, Rank, and generate with Diffusion), a framework that imitates the process by integrating a multimodal large language model (MLLM), a grounding module, and a diffusion model, to enhance video saliency prediction. Specifically, we introduce a novel prompting method VSOR-CoT (Video Salient Object Ranking Chain of Thought), which utilizes an MLLM with a grounding module to caption video content and infer salient objects along with their rankings and positions. This process derives ranking maps that can be sufficiently leveraged by the diffusion model to decode the saliency maps for the given video accurately. Extensive experiments show the effectiveness of VSOR-CoT in improving the performance of video saliency prediction. The proposed CaRDiff performs better than state-of-the-art models on the MVS dataset and demonstrates cross-dataset capabilities on the DHF1k dataset through zero-shot evaluation.