Abstract:Utilizing unmanned aerial vehicles (UAVs) with edge server to assist terrestrial mobile edge computing (MEC) has attracted tremendous attention. Nevertheless, state-of-the-art schemes based on deterministic optimizations or single-objective reinforcement learning (RL) cannot reduce the backlog of task bits and simultaneously improve energy efficiency in highly dynamic network environments, where the design problem amounts to a sequential decision-making problem. In order to address the aforementioned problems, as well as the curses of dimensionality introduced by the growing number of terrestrial terrestrial users, this paper proposes a distributed multi-objective (MO) dynamic trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method. The design of n-step return is also applied to average fluctuations in the backlog. Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance, compared to the conventional 1-step return design. Due to such design and the kernel-based neural network, to which decision-making features can be continuously added, the kernel-based approach can outperform the approach based on fully-connected deep neural network, yielding improvement in energy consumption and the backlog performance, as well as a significant reduction in decision-making and online learning time.
Abstract:Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, careful evaluations by human reveal that the translations produced by LLMs still contain multiple errors. Importantly, feeding back such error information into the LLMs can lead to self-correction and result in improved translation performance. Motivated by these insights, we introduce a systematic LLM-based self-correcting translation framework, named TER, which stands for Translate, Estimate, and Refine, marking a significant step forward in this direction. Our findings demonstrate that 1) our self-correction framework successfully assists LLMs in improving their translation quality across a wide range of languages, whether it's from high-resource languages to low-resource ones or whether it's English-centric or centered around other languages; 2) TER exhibits superior systematicity and interpretability compared to previous methods; 3) different estimation strategies yield varied impacts on AI feedback, directly affecting the effectiveness of the final corrections. We further compare different LLMs and conduct various experiments involving self-correction and cross-model correction to investigate the potential relationship between the translation and evaluation capabilities of LLMs. Our code and data are available at https://github.com/fzp0424/self_correct_mt
Abstract:Visual Relation Detection (VRD) aims to detect relationships between objects for image understanding. Most existing VRD methods rely on thousands of training samples of each relationship to achieve satisfactory performance. Some recent papers tackle this problem by few-shot learning with elaborately designed pipelines and pre-trained word vectors. However, the performance of existing few-shot VRD models is severely hampered by the poor generalization capability, as they struggle to handle the vast semantic diversity of visual relationships. Nonetheless, humans have the ability to learn new relationships with just few examples based on their knowledge. Inspired by this, we devise a knowledge-augmented, few-shot VRD framework leveraging both textual knowledge and visual relation knowledge to improve the generalization ability of few-shot VRD. The textual knowledge and visual relation knowledge are acquired from a pre-trained language model and an automatically constructed visual relation knowledge graph, respectively. We extensively validate the effectiveness of our framework. Experiments conducted on three benchmarks from the commonly used Visual Genome dataset show that our performance surpasses existing state-of-the-art models with a large improvement.
Abstract:Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Abstract:Over the years, reasoning over knowledge graphs (KGs), which aims to infer new conclusions from known facts, has mostly focused on static KGs. The unceasing growth of knowledge in real life raises the necessity to enable the inductive reasoning ability on expanding KGs. Existing inductive work assumes that new entities all emerge once in a batch, which oversimplifies the real scenario that new entities continually appear. This study dives into a more realistic and challenging setting where new entities emerge in multiple batches. We propose a walk-based inductive reasoning model to tackle the new setting. Specifically, a graph convolutional network with adaptive relation aggregation is designed to encode and update entities using their neighboring relations. To capture the varying neighbor importance, we employ a query-aware feedback attention mechanism during the aggregation. Furthermore, to alleviate the sparse link problem of new entities, we propose a link augmentation strategy to add trustworthy facts into KGs. We construct three new datasets for simulating this multi-batch emergence scenario. The experimental results show that our proposed model outperforms state-of-the-art embedding-based, walk-based and rule-based models on inductive KG reasoning.
Abstract:Entity alignment is a basic and vital technique in knowledge graph (KG) integration. Over the years, research on entity alignment has resided on the assumption that KGs are static, which neglects the nature of growth of real-world KGs. As KGs grow, previous alignment results face the need to be revisited while new entity alignment waits to be discovered. In this paper, we propose and dive into a realistic yet unexplored setting, referred to as continual entity alignment. To avoid retraining an entire model on the whole KGs whenever new entities and triples come, we present a continual alignment method for this task. It reconstructs an entity's representation based on entity adjacency, enabling it to generate embeddings for new entities quickly and inductively using their existing neighbors. It selects and replays partial pre-aligned entity pairs to train only parts of KGs while extracting trustworthy alignment for knowledge augmentation. As growing KGs inevitably contain non-matchable entities, different from previous works, the proposed method employs bidirectional nearest neighbor matching to find new entity alignment and update old alignment. Furthermore, we also construct new datasets by simulating the growth of multilingual DBpedia. Extensive experiments demonstrate that our continual alignment method is more effective than baselines based on retraining or inductive learning.
Abstract:The goal of representation learning of knowledge graph is to encode both entities and relations into a low-dimensional embedding spaces. Many recent works have demonstrated the benefits of knowledge graph embedding on knowledge graph completion task, such as relation extraction. However, we observe that: 1) existing method just take direct relations between entities into consideration and fails to express high-order structural relationship between entities; 2) these methods just leverage relation triples of KGs while ignoring a large number of attribute triples that encoding rich semantic information. To overcome these limitations, this paper propose a novel knowledge graph embedding method, named KANE, which is inspired by the recent developments of graph convolutional networks (GCN). KANE can capture both high-order structural and attribute information of KGs in an efficient, explicit and unified manner under the graph convolutional networks framework. Empirical results on three datasets show that KANE significantly outperforms seven state-of-arts methods. Further analysis verify the efficiency of our method and the benefits brought by the attention mechanism.
Abstract:Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Facing with patient's symptoms, experienced caregivers make right medical decisions based on their professional knowledge that accurately grasps relationships between symptoms, diagnosis and corresponding treatments. In this paper, we aim to capture these relationships by constructing a large and high-quality heterogenous graph linking patients, diseases, and drugs (PDD) in EMRs. Specifically, we propose a novel framework to extract important medical entities from MIMIC-III (Medical Information Mart for Intensive Care III) and automatically link them with the existing biomedical knowledge graphs, including ICD-9 ontology and DrugBank. The PDD graph presented in this paper is accessible on the Web via the SPARQL endpoint, and provides a pathway for medical discovery and applications, such as effective treatment recommendations.