Abstract:Wireless-powered underground sensor networks (WPUSNs), which enable wireless energy transfer to sensors located underground, is a promising approach for establishing sustainable internet of underground things (IoUT). To support urgent information transmission and improve resource utilization within WPUSNs, backscatter communication (BC) is introduced, resulting in what is known as wireless-powered backscatter underground sensor networks (WPBUSNs). Nevertheless, the performance of WPBUSNs is significantly limited by severe channel impairments caused by the underground soil and the blockage of direct links. To overcome this challenge, in this work, we propose integrating reconfigurable intelligent surface (RIS) with WPBUSNs, leading to the development of RIS-aided WPBUSNs. We begin by reviewing the recent advancements in BC-WPUSNs and RIS. Then, we propose a general architecture of RIS-aided WPBUSNs across various IoUT scenarios, and discuss its advantages and implementation challenges. To illustrate the effectiveness of RIS-aided WPBUSNs, we focus on a realistic farming case study, demonstrating that our proposed framework outperforms the three benchmarks in terms of the sum throughput. Finally, we discuss the open challenges and future research directions for translating this study into practical IoUT applications.
Abstract:Supporting immense throughput and ubiquitous connectivity holds paramount importance for future wireless networks. To this end, this letter focuses on how the spatial beams configured for legacy near-field (NF) users can be leveraged to serve extra NF or far-field users while ensuring the rate requirements of legacy NF users. In particular, a flexible rate splitting multiple access (RSMA) scheme is proposed to efficiently manage interference, which carefully selects a subset of legacy users to decode the common stream. Beam scheduling, power allocation, common rate allocation, and user selection are jointly optimized to maximize the sum rate of additional users. To solve the formulated discrete non-convex problem, it is split into three subproblems. The accelerated bisection searching, quadratic transform, and simulated annealing approaches are developed to attack them. Simulation results reveal that the proposed transmit scheme and algorithm achieve significant gains over three competing benchmarks.
Abstract:Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has garnered significant research interest recently due to its ability to generalize existing reconfigurable intelligent surface (RIS) architectures and provide enhanced performance through flexible inter-connection among RIS elements. However, current BD-RIS designs often face challenges related to high circuit complexity and computational complexity, and there is limited study on the trade-off between system performance and circuit complexity. To address these issues, in this work, we propose a novel BD-RIS architecture named Q-stem connected RIS that integrates the characteristics of existing single connected, tree connected, and fully connected BD-RIS, facilitating an effective trade-off between system performance and circuit complexity. Additionally, we propose two algorithms to design the RIS scattering matrix for a Q-stem connected RIS aided multi-user broadcast channels, namely, a low-complexity least squares (LS) algorithm and a suboptimal LS-based quasi-Newton algorithm. Simulations show that the proposed architecture is capable of attaining the sum channel gain achieved by fully connected RIS while reducing the circuit complexity. Moreover, the proposed LS-based quasi-Newton algorithm significantly outperforms the baselines, while the LS algorithm provides comparable performance with a substantial reduction in computational complexity.
Abstract:This paper addresses the robust beamforming design for rate splitting multiple access (RSMA)-aided visible light communication (VLC) networks with imperfect channel state information at the transmitter (CSIT). In particular, we first derive the theoretical lower bound for the channel capacity of RSMA-aided VLC networks.Then we investigate the beamforming design to solve the max-min fairness (MMF) problem of RSMA-aided VLC networks under the practical optical power constraint and electrical power constraint while considering the practical imperfect CSIT scenario.To address the problem, we propose a constrained-concave-convex programming (CCCP)-based beamforming design algorithm which exploits semidefinite relaxation (SDR) technique and a penalty method to deal with the rank-one constraint caused by SDR.Numerical results show that the proposed robust beamforming design algorithm for RSMA-aided VLC network achieves a superior performance over the existing ones for space-division multiple access (SDMA) and non-orthogonal multiple access (NOMA).
Abstract:Rate splitting multiple access (RSMA) relies on beamforming design for attaining spectral efficiency and energy efficiency gains over traditional multiple access schemes. While conventional optimization approaches such as weighted minimum mean square error (WMMSE) achieve suboptimal solutions for RSMA beamforming optimization, they are computationally demanding. A novel approach based on fractional programming (FP) has unveiled the optimal beamforming structure (OBS) for RSMA. This method, combined with a hyperplane fixed point iteration (HFPI) approach, named FP-HFPI, provides suboptimal beamforming solutions with identical sum rate performance but much lower computational complexity compared to WMMSE. Inspired by such an approach, in this work, a novel deep unfolding framework based on FP-HFPI, named rate-splitting-beamforming neural network (RS-BNN), is proposed to unfold the FP-HFPI algorithm. Numerical results indicate that the proposed RS-BNN attains a level of performance closely matching that of WMMSE and FP-HFPI, while dramatically reducing the computational complexity.
Abstract:This work initiates the study of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided transmitter architecture for integrated sensing and communication (ISAC) in the millimeter-wave (mmWave) frequency band. Deploying BD-RIS at the transmitter side not only alleviates the need for extensive fully digital radio frequency (RF) chains but also enhances both communication and sensing performance. These benefits are facilitated by the additional design flexibility introduced by the fully-connected scattering matrix of BD-RIS. To achieve the aforementioned benefits, in this work, we propose an efficient two-stage algorithm to design the digital beamforming of the transmitter and the scattering matrix of the BD-RIS with the aim of jointly maximizing the sum rate for multiple communication users and minimizing the largest eigenvalue of the Cramer-Rao bound (CRB) matrix for multiple sensing targets. Numerical results show that the transmitter-side BD-RIS-aided mmWave ISAC outperforms the conventional diagonal-RIS-aided ones in both communication and sensing performance.
Abstract:Utilizing unmanned aerial vehicles (UAVs) with edge server to assist terrestrial mobile edge computing (MEC) has attracted tremendous attention. Nevertheless, state-of-the-art schemes based on deterministic optimizations or single-objective reinforcement learning (RL) cannot reduce the backlog of task bits and simultaneously improve energy efficiency in highly dynamic network environments, where the design problem amounts to a sequential decision-making problem. In order to address the aforementioned problems, as well as the curses of dimensionality introduced by the growing number of terrestrial terrestrial users, this paper proposes a distributed multi-objective (MO) dynamic trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method. The design of n-step return is also applied to average fluctuations in the backlog. Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance, compared to the conventional 1-step return design. Due to such design and the kernel-based neural network, to which decision-making features can be continuously added, the kernel-based approach can outperform the approach based on fully-connected deep neural network, yielding improvement in energy consumption and the backlog performance, as well as a significant reduction in decision-making and online learning time.
Abstract:Multiple access (MA) is a crucial part of any wireless system and refers to techniques that make use of the resource dimensions to serve multiple users/devices/machines/services, ideally in the most efficient way. Given the needs of multi-functional wireless networks for integrated communications, sensing, localization, computing, coupled with the surge of machine learning / artificial intelligence (AI) in wireless networks, MA techniques are expected to experience a paradigm shift in 6G and beyond. In this paper, we provide a tutorial, survey and outlook of past, emerging and future MA techniques and pay a particular attention to how wireless network intelligence and multi-functionality will lead to a re-thinking of those techniques. The paper starts with an overview of orthogonal, physical layer multicasting, space domain, power domain, ratesplitting, code domain MAs, and other domains, and highlight the importance of researching universal multiple access to shrink instead of grow the knowledge tree of MA schemes by providing a unified understanding of MA schemes across all resource dimensions. It then jumps into rethinking MA schemes in the era of wireless network intelligence, covering AI for MA such as AI-empowered resource allocation, optimization, channel estimation, receiver designs, user behavior predictions, and MA for AI such as federated learning/edge intelligence and over the air computation. We then discuss MA for network multi-functionality and the interplay between MA and integrated sensing, localization, and communications. We finish with studying MA for emerging intelligent applications before presenting a roadmap toward 6G standardization. We also point out numerous directions that are promising for future research.
Abstract:Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has been proposed recently as a novel and generalized RIS architecture that offers enhanced wave manipulation flexibility and large coverage expansion. However, the beyond-diagonal mathematical model in BD-RIS inevitably introduces additional optimization challenges in beamforming design. In this letter, we derive a closed-form solution for the BD-RIS passive beamforming matrix that maximizes the sum of the effective channel gains among users. We further propose a computationally efficient two-stage beamforming framework to jointly design the active beamforming at the base station and passive beamforming at the BD-RIS to enhance the sum-rate for a BD-RIS aided multi-user multi-antenna network.Numerical results show that our proposed algorithm achieves a higher sum-rate while requiring less computation time compared to state-of-the-art algorithms. The proposed algorithm paves the way for practical beamforming design in BD-RIS aided wireless networks.
Abstract:This letter focuses on a transmitter or base station (BS) side beyond-diagonal reflecting intelligent surface (BD-RIS) deployment strategy to enhance the spectral efficiency (SE) of a time-division-duplex massive multiple-input multiple-output (MaMIMO) network. In this strategy, the active antenna array utilizes a BD-RIS at the BS to serve multiple users in the downlink. Based on the knowledge of statistical channel state information (CSI), the BD-RIS coefficients matrix is optimized by employing a novel manifold algorithm, and the power control coefficients are then optimized with the objective of maximizing the minimum SE. Through numerical results we illustrate the SE performance of the proposed transmission framework and compare it with that of a conventional MaMIMO transmission for different network settings.