Abstract:Speech enhancement is crucial in human-computer interaction, especially for ubiquitous devices. Ultrasound-based speech enhancement has emerged as an attractive choice because of its superior ubiquity and performance. However, inevitable interference from unexpected and unintended sources during audio-ultrasound data acquisition makes existing solutions rely heavily on human effort for data collection and processing. This leads to significant data scarcity that limits the full potential of ultrasound-based speech enhancement. To address this, we propose USpeech, a cross-modal ultrasound synthesis framework for speech enhancement with minimal human effort. At its core is a two-stage framework that establishes correspondence between visual and ultrasonic modalities by leveraging audible audio as a bridge. This approach overcomes challenges from the lack of paired video-ultrasound datasets and the inherent heterogeneity between video and ultrasound data. Our framework incorporates contrastive video-audio pre-training to project modalities into a shared semantic space and employs an audio-ultrasound encoder-decoder for ultrasound synthesis. We then present a speech enhancement network that enhances speech in the time-frequency domain and recovers the clean speech waveform via a neural vocoder. Comprehensive experiments show USpeech achieves remarkable performance using synthetic ultrasound data comparable to physical data, significantly outperforming state-of-the-art ultrasound-based speech enhancement baselines. USpeech is open-sourced at https://github.com/aiot-lab/USpeech/.
Abstract:Mental health disorders are among the most prevalent diseases worldwide, affecting nearly one in four people. Despite their widespread impact, the intervention rate remains below 25%, largely due to the significant cooperation required from patients for both diagnosis and intervention. The core issue behind this low treatment rate is stigma, which discourages over half of those affected from seeking help. This paper presents MindGuard, an accessible, stigma-free, and professional mobile mental healthcare system designed to provide mental health first aid. The heart of MindGuard is an innovative edge LLM, equipped with professional mental health knowledge, that seamlessly integrates objective mobile sensor data with subjective Ecological Momentary Assessment records to deliver personalized screening and intervention conversations. We conduct a broad evaluation of MindGuard using open datasets spanning four years and real-world deployment across various mobile devices involving 20 subjects for two weeks. Remarkably, MindGuard achieves results comparable to GPT-4 and outperforms its counterpart with more than 10 times the model size. We believe that MindGuard paves the way for mobile LLM applications, potentially revolutionizing mental healthcare practices by substituting self-reporting and intervention conversations with passive, integrated monitoring within daily life, thus ensuring accessible and stigma-free mental health support.
Abstract:Rate splitting multiple access (RSMA) relies on beamforming design for attaining spectral efficiency and energy efficiency gains over traditional multiple access schemes. While conventional optimization approaches such as weighted minimum mean square error (WMMSE) achieve suboptimal solutions for RSMA beamforming optimization, they are computationally demanding. A novel approach based on fractional programming (FP) has unveiled the optimal beamforming structure (OBS) for RSMA. This method, combined with a hyperplane fixed point iteration (HFPI) approach, named FP-HFPI, provides suboptimal beamforming solutions with identical sum rate performance but much lower computational complexity compared to WMMSE. Inspired by such an approach, in this work, a novel deep unfolding framework based on FP-HFPI, named rate-splitting-beamforming neural network (RS-BNN), is proposed to unfold the FP-HFPI algorithm. Numerical results indicate that the proposed RS-BNN attains a level of performance closely matching that of WMMSE and FP-HFPI, while dramatically reducing the computational complexity.
Abstract:Inertial tracking is vital for robotic IoT and has gained popularity thanks to the ubiquity of low-cost Inertial Measurement Units (IMUs) and deep learning-powered tracking algorithms. Existing works, however, have not fully utilized IMU measurements, particularly magnetometers, nor maximized the potential of deep learning to achieve the desired accuracy. To enhance the tracking accuracy for indoor robotic applications, we introduce NeurIT, a sequence-to-sequence framework that elevates tracking accuracy to a new level. NeurIT employs a Time-Frequency Block-recurrent Transformer (TF-BRT) at its core, combining the power of recurrent neural network (RNN) and Transformer to learn representative features in both time and frequency domains. To fully utilize IMU information, we strategically employ body-frame differentiation of the magnetometer, which considerably reduces the tracking error. NeurIT is implemented on a customized robotic platform and evaluated in various indoor environments. Experimental results demonstrate that NeurIT achieves a mere 1-meter tracking error over a 300-meter distance. Notably, it significantly outperforms state-of-the-art baselines by 48.21% on unseen data. NeurIT also performs comparably to the visual-inertial approach (Tango Phone) in vision-favored conditions and surpasses it in plain environments. We believe NeurIT takes an important step forward toward practical neural inertial tracking for ubiquitous and scalable tracking of robotic things. NeurIT, including the source code and the dataset, is open-sourced here: https://github.com/NeurIT-Project/NeurIT.
Abstract:There is a burgeoning discussion around the capabilities of Large Language Models (LLMs) in acting as fundamental components that can be seamlessly incorporated into Artificial Intelligence of Things (AIoT) to interpret complex trajectories. This study introduces LLMTrack, a model that illustrates how LLMs can be leveraged for Zero-Shot Trajectory Recognition by employing a novel single-prompt technique that combines role-play and think step-by-step methodologies with unprocessed Inertial Measurement Unit (IMU) data. We evaluate the model using real-world datasets designed to challenge it with distinct trajectories characterized by indoor and outdoor scenarios. In both test scenarios, LLMTrack not only meets but exceeds the performance benchmarks set by traditional machine learning approaches and even contemporary state-of-the-art deep learning models, all without the requirement of training on specialized datasets. The results of our research suggest that, with strategically designed prompts, LLMs can tap into their extensive knowledge base and are well-equipped to analyze raw sensor data with remarkable effectiveness.
Abstract:There is an ongoing debate regarding the potential of Large Language Models (LLMs) as foundational models seamlessly integrated with Cyber-Physical Systems (CPS) for interpreting the physical world. In this paper, we carry out a case study to answer the following question: Are LLMs capable of zero-shot human activity recognition (HAR). Our study, HARGPT, presents an affirmative answer by demonstrating that LLMs can comprehend raw IMU data and perform HAR tasks in a zero-shot manner, with only appropriate prompts. HARGPT inputs raw IMU data into LLMs and utilizes the role-play and think step-by-step strategies for prompting. We benchmark HARGPT on GPT4 using two public datasets of different inter-class similarities and compare various baselines both based on traditional machine learning and state-of-the-art deep classification models. Remarkably, LLMs successfully recognize human activities from raw IMU data and consistently outperform all the baselines on both datasets. Our findings indicate that by effective prompting, LLMs can interpret raw IMU data based on their knowledge base, possessing a promising potential to analyze raw sensor data of the physical world effectively.
Abstract:Target detection is pivotal for modern urban computing applications. While image-based techniques are widely adopted, they falter under challenging environmental conditions such as adverse weather, poor lighting, and occlusion. To improve the target detection performance under complex real-world scenarios, this paper proposes an intelligent integrated optical camera and millimeter-wave (mmWave) radar system. Utilizing both physical knowledge and data-driven methods, a long-term robust radar-camera fusion algorithm is proposed to solve the heterogeneous data fusion problem for detection improvement. For the occlusion scenarios, the proposed algorithm can effectively detect occluded targets with the help of memory through performing long-term detection. For dark scenarios with low-light conditions, the proposed algorithm can effectively mark the target in the dark picture as well as provide rough stickman imaging. The above two innovative functions of the hybrid optical camera and mmWave radar system are tested in real-world scenarios. The results demonstrate the robustness and significant enhancement in the target detection performance of our integrated system.
Abstract:CSI feedback is an important problem of Massive multiple-input multiple-output (MIMO) technology because the feedback overhead is proportional to the number of sub-channels and the number of antennas, both of which scale with the size of the Massive MIMO system. Deep learning-based CSI feedback methods have been widely adopted recently owing to their superior performance. Despite the success, current approaches have not fully exploited the relationship between the characteristics of CSI data and the deep learning framework. In this paper, we propose a jigsaw puzzles aided training strategy (JPTS) to enhance the deep learning-based Massive MIMO CSI feedback approaches by maximizing mutual information between the original CSI and the compressed CSI. We apply JPTS on top of existing state-of-the-art methods. Experimental results show that by adopting this training strategy, the accuracy can be boosted by 12.07% and 7.01% on average in indoor and outdoor environments, respectively. The proposed method is ready to adopt to existing deep learning frameworks of Massive MIMO CSI feedback. Codes of JPTS are available on GitHub for reproducibility.
Abstract:The Massive Multiple Input Multiple Output (MIMO) system is a core technology of the next generation communication. With the growing complexity of CSI in massive MIMO system, traditional compressive sensing based CSI feedback has become a bottleneck problem that is limited in piratical. Recently, numerous deep learning based CSI feedback approaches demonstrate the efficiency and potential. However, the existing methods lack a reasonable interpretation of the deep learning model and the accuracy of the model decreases significantly as the CSI compression rate increases. In this paper, from the intrinsic properties of CSI data itself, we devised the corresponding deep learning building blocks to compose a novel neural network CQNet and experiment result shows CQNet outperform the state-of-the-art method with less computational overhead by achieving an average performance improvement of 8.07% in both outdoor and indoor scenarios. In addition, this paper also investigates the reasons for the decrease in model accuracy at large compression rates and proposes a strategy to embed a quantization layer to achieve effective compression, by which the original accuracy loss of 67.19% on average is reduced to 21.96% on average, and the compression rate is increased by 8 times on the original benchmark.