Abstract:Label imbalance and homophily-heterophily mixture are the fundamental problems encountered when applying Graph Neural Networks (GNNs) to Graph Fraud Detection (GFD) tasks. Existing GNN-based GFD models are designed to augment graph structure to accommodate the inductive bias of GNNs towards homophily, by excluding heterophilic neighbors during message passing. In our work, we argue that the key to applying GNNs for GFD is not to exclude but to {\em distinguish} neighbors with different labels. Grounded in this perspective, we introduce Partitioning Message Passing (PMP), an intuitive yet effective message passing paradigm expressly crafted for GFD. Specifically, in the neighbor aggregation stage of PMP, neighbors with different classes are aggregated with distinct node-specific aggregation functions. By this means, the center node can adaptively adjust the information aggregated from its heterophilic and homophilic neighbors, thus avoiding the model gradient being dominated by benign nodes which occupy the majority of the population. We theoretically establish a connection between the spatial formulation of PMP and spectral analysis to characterize that PMP operates an adaptive node-specific spectral graph filter, which demonstrates the capability of PMP to handle heterophily-homophily mixed graphs. Extensive experimental results show that PMP can significantly boost the performance on GFD tasks.
Abstract:Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.
Abstract:Class imbalance in graph-structured data, where minor classes are significantly underrepresented, poses a critical challenge for Graph Neural Networks (GNNs). To address this challenge, existing studies generally generate new minority nodes and edges connecting new nodes to the original graph to make classes balanced. However, they do not solve the problem that majority classes still propagate information to minority nodes by edges in the original graph which introduces bias towards majority classes. To address this, we introduce BuffGraph, which inserts buffer nodes into the graph, modulating the impact of majority classes to improve minor class representation. Our extensive experiments across diverse real-world datasets empirically demonstrate that BuffGraph outperforms existing baseline methods in class-imbalanced node classification in both natural settings and imbalanced settings. Code is available at https://anonymous.4open.science/r/BuffGraph-730A.
Abstract:The integration of Large Language Models (LLMs) with Graph Representation Learning (GRL) marks a significant evolution in analyzing complex data structures. This collaboration harnesses the sophisticated linguistic capabilities of LLMs to improve the contextual understanding and adaptability of graph models, thereby broadening the scope and potential of GRL. Despite a growing body of research dedicated to integrating LLMs into the graph domain, a comprehensive review that deeply analyzes the core components and operations within these models is notably lacking. Our survey fills this gap by proposing a novel taxonomy that breaks down these models into primary components and operation techniques from a novel technical perspective. We further dissect recent literature into two primary components including knowledge extractors and organizers, and two operation techniques including integration and training stratigies, shedding light on effective model design and training strategies. Additionally, we identify and explore potential future research avenues in this nascent yet underexplored field, proposing paths for continued progress.
Abstract:Graph representation learning, a critical step in graph-centric tasks, has seen significant advancements. Earlier techniques often operate in an end-to-end setting, where performance heavily relies on the availability of ample labeled data. This constraint has spurred the emergence of few-shot learning on graphs, where only a few task-specific labels are available for each task. Given the extensive literature in this field, this survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions. We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches, with a finer-grained classification in each family to aid readers in their method selection process. Within each category, we analyze the relationships among these methods and compare their strengths and limitations. Finally, we outline prospective future directions for few-shot learning on graphs to catalyze continued innovation in this field.
Abstract:Graph neural networks (GNNs) and heterogeneous graph neural networks (HGNNs) are prominent techniques for homogeneous and heterogeneous graph representation learning, yet their performance in an end-to-end supervised framework greatly depends on the availability of task-specific supervision. To reduce the labeling cost, pre-training on self-supervised pretext tasks has become a popular paradigm,but there is often a gap between the pre-trained model and downstream tasks, stemming from the divergence in their objectives. To bridge the gap, prompt learning has risen as a promising direction especially in few-shot settings, without the need to fully fine-tune the pre-trained model. While there has been some early exploration of prompt-based learning on graphs, they primarily deal with homogeneous graphs, ignoring the heterogeneous graphs that are prevalent in downstream applications. In this paper, we propose HGPROMPT, a novel pre-training and prompting framework to unify not only pre-training and downstream tasks but also homogeneous and heterogeneous graphs via a dual-template design. Moreover, we propose dual-prompt in HGPROMPT to assist a downstream task in locating the most relevant prior to bridge the gaps caused by not only feature variations but also heterogeneity differences across tasks. Finally, we thoroughly evaluate and analyze HGPROMPT through extensive experiments on three public datasets.
Abstract:Graph neural networks have emerged as a powerful tool for graph representation learning, but their performance heavily relies on abundant task-specific supervision. To reduce labeling requirement, the "pre-train, prompt" paradigms have become increasingly common. However, existing study of prompting on graphs is limited, lacking a universal treatment to appeal to different downstream tasks. In this paper, we propose GraphPrompt, a novel pre-training and prompting framework on graphs. GraphPrompt not only unifies pre-training and downstream tasks into a common task template but also employs a learnable prompt to assist a downstream task in locating the most relevant knowledge from the pre-trained model in a task-specific manner. To further enhance GraphPrompt in these two stages, we extend it into GraphPrompt+ with two major enhancements. First, we generalize several popular graph pre-training tasks beyond simple link prediction to broaden the compatibility with our task template. Second, we propose a more generalized prompt design that incorporates a series of prompt vectors within every layer of the pre-trained graph encoder, in order to capitalize on the hierarchical information across different layers beyond just the readout layer. Finally, we conduct extensive experiments on five public datasets to evaluate and analyze GraphPrompt and GraphPrompt+.
Abstract:Recent research has demonstrated the efficacy of pre-training graph neural networks (GNNs) to capture the transferable graph semantics and enhance the performance of various downstream tasks. However, the semantic knowledge learned from pretext tasks might be unrelated to the downstream task, leading to a semantic gap that limits the application of graph pre-training. To reduce this gap, traditional approaches propose hybrid pre-training to combine various pretext tasks together in a multi-task learning fashion and learn multi-grained knowledge, which, however, cannot distinguish tasks and results in some transferable task-specific knowledge distortion by each other. Moreover, most GNNs cannot distinguish nodes located in different parts of the graph, making them fail to learn position-specific knowledge and lead to suboptimal performance. In this work, inspired by the prompt-based tuning in natural language processing, we propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs through a prompt mechanism, namely multi-task graph dual prompt (ULTRA-DP). Based on this framework, we propose a prompt-based transferability test to find the most relevant pretext task in order to reduce the semantic gap. To implement the hybrid pre-training tasks, beyond the classical edge prediction task (node-node level), we further propose a novel pre-training paradigm based on a group of $k$-nearest neighbors (node-group level). The combination of them across different scales is able to comprehensively express more structural semantics and derive richer multi-grained knowledge. Extensive experiments show that our proposed ULTRA-DP can significantly enhance the performance of hybrid pre-training methods and show the generalizability to other pre-training tasks and backbone architectures.
Abstract:While numerous public blockchain datasets are available, their utility is constrained by a singular focus on blockchain data. This constraint limits the incorporation of relevant social network data into blockchain analysis, thereby diminishing the breadth and depth of insight that can be derived. To address the above limitation, we introduce ETGraph, a novel dataset that authentically links Ethereum and Twitter, marking the first and largest dataset of its kind. ETGraph combines Ethereum transaction records (2 million nodes and 30 million edges) and Twitter following data (1 million nodes and 3 million edges), bonding 30,667 Ethereum addresses with verified Twitter accounts sourced from OpenSea. Detailed statistical analysis on ETGraph highlights the structural differences between Twitter-matched and non-Twitter-matched Ethereum addresses. Extensive experiments, including Ethereum link prediction, wash-trading Ethereum addresses detection, and Twitter-Ethereum matching link prediction, emphasize the significant role of Twitter data in enhancing Ethereum analysis. ETGraph is available at https://etgraph.deno.dev/.
Abstract:The application of Unbiased Learning to Rank (ULTR) is widespread in modern systems for training unbiased ranking models from biased click logs. The key is to explicitly model a generation process for user behavior and fit click data based on examination hypothesis. Previous research found empirically that the true latent relevance can be recovered in most cases as long as the clicks are perfectly fitted. However, we demonstrate that this is not always achievable, resulting in a significant reduction in ranking performance. In this work, we aim to answer if or when the true relevance can be recovered from click data, which is a foundation issue for ULTR field. We first define a ranking model as identifiable if it can recover the true relevance up to a scaling transformation, which is enough for pairwise ranking objective. Then we explore an equivalent condition for identifiability that can be novely expressed as a graph connectivity test problem: if and only if a graph (namely identifiability graph, or IG) constructed on the underlying structure of the dataset is connected, we can guarantee that the relevance can be correctly recovered. When the IG is not connected, there may be bad cases leading to poor ranking performance. To address this issue, we propose two methods, namely node intervention and node merging, to modify the dataset and restore connectivity of the IG. Empirical results obtained on a simulation dataset and two LTR benchmark datasets confirm the validity of our proposed theorems and show the effectiveness of our methods in mitigating data bias when the relevance model is unidentifiable.