Abstract:Symbolic regression automatically searches for mathematical equations to reveal underlying mechanisms within datasets, offering enhanced interpretability compared to black box models. Traditionally, symbolic regression has been considered to be purely numeric-driven, with insufficient attention given to the potential contributions of visual information in augmenting this process. When dealing with high-dimensional and complex datasets, existing symbolic regression models are often inefficient and tend to generate overly complex equations, making subsequent mechanism analysis complicated. In this paper, we propose the vision-guided multimodal symbolic regression model, called ViSymRe, that systematically explores how visual information can improve various metrics of symbolic regression. Compared to traditional models, our proposed model has the following innovations: (1) It integrates three modalities: vision, symbol and numeric to enhance symbolic regression, enabling the model to benefit from the strengths of each modality; (2) It establishes a meta-learning framework that can learn from historical experiences to efficiently solve new symbolic regression problems; (3) It emphasizes the simplicity and structural rationality of the equations rather than merely numerical fitting. Extensive experiments show that our proposed model exhibits strong generalization capability and noise resistance. The equations it generates outperform state-of-the-art numeric-only baselines in terms of fitting effect, simplicity and structural accuracy, thus being able to facilitate accurate mechanism analysis and the development of theoretical models.
Abstract:Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
Abstract:Sharpness Aware Minimization (SAM) enhances performance across various neural architectures and datasets. As models are continually scaled up to improve performance, a rigorous understanding of SAM's scaling behaviour is paramount. To this end, we study the infinite-width limit of neural networks trained with SAM, using the Tensor Programs framework. Our findings reveal that the dynamics of standard SAM effectively reduce to applying SAM solely in the last layer in wide neural networks, even with optimal hyperparameters. In contrast, we identify a stable parameterization with layerwise perturbation scaling, which we call $\textit{Maximal Update and Perturbation Parameterization}$ ($\mu$P$^2$), that ensures all layers are both feature learning and effectively perturbed in the limit. Through experiments with MLPs, ResNets and Vision Transformers, we empirically demonstrate that $\mu$P$^2$ is the first parameterization to achieve hyperparameter transfer of the joint optimum of learning rate and perturbation radius across model scales. Moreover, we provide an intuitive condition to derive $\mu$P$^2$ for other perturbation rules like Adaptive SAM and SAM-ON, also ensuring balanced perturbation effects across all layers.
Abstract:Affine Frequency Division Multiplexing (AFDM) is considered as a promising solution for next-generation wireless systems due to its satisfactory performance in high-mobility scenarios. By adjusting AFDM parameters to match the multi-path delay and Doppler shift, AFDM can achieve two-dimensional time-frequency diversity gain. However, under fractional delay-Doppler channels, AFDM encounters energy dispersion in the affine domain, which poses significant challenges for signal detection. This paper first investigates the AFDM system model under fractional delay-Doppler channels. To address the energy dispersion in the affine domain, a unitary transformation based approximate message passing (UAMP) algorithm is proposed. The algorithm performs unitary transformations and message passing in the time domain to avoid the energy dispersion issue. Additionally, we implemented block-wise processing to reduce computational complexity. Finally, the empirical extrinsic information transfer (E-EXIT) chart is used to evaluate iterative detection performance. Simulation results show that UAMP significantly outperforms GAMP under fractional delay-Doppler conditions.
Abstract:Building upon advancements in Large Language Models (LLMs), the field of audio processing has seen increased interest in training audio generation tasks with discrete audio token sequences. However, directly discretizing audio by neural audio codecs often results in sequences that fundamentally differ from text sequences. Unlike text, where text token sequences are deterministic, discrete audio tokens can exhibit significant variability based on contextual factors, while still producing perceptually identical audio segments. We refer to this phenomenon as \textbf{Discrete Representation Inconsistency (DRI)}. This inconsistency can lead to a single audio segment being represented by multiple divergent sequences, which creates confusion in neural codec language models and results in omissions and repetitions during speech generation. In this paper, we quantitatively analyze the DRI phenomenon within popular audio tokenizers such as EnCodec. Our approach effectively mitigates the DRI phenomenon of the neural audio codec. Furthermore, extensive experiments on the neural codec language model over LibriTTS and large-scale MLS datases (44,000 hours) demonstrate the effectiveness and generality of our method. The demo of audio samples is available online~\footnote{\url{https://consistencyinneuralcodec.github.io}}.
Abstract:Large Language Models (LLMs) demonstrate exceptional capabilities in various scenarios. However, they suffer from much redundant information and tend to be lost in the middle in long context scenarios, leading to inferior performance. To address these challenges, we present Perception Compressor, a training-free prompt compression method. It includes a dual-slope ratio allocator to dynamically assign compression ratios and open-book ratios, a perception retriever that leverages guiding questions and instruction to retrieve the most relevant demonstrations, and a semi-guided iterative compression that retains key information at the token level while removing tokens that distract the LLM. We conduct extensive experiments on long context benchmarks, i.e., NaturalQuestions, LongBench, and MuSiQue. Experiment results show that Perception Compressor outperforms existing methods by a large margin, achieving state-of-the-art performance.
Abstract:It is common practice in text classification to only use one majority label for model training even if a dataset has been annotated by multiple annotators. Doing so can remove valuable nuances and diverse perspectives inherent in the annotators' assessments. This paper proposes and compares three different strategies to leverage annotator disagreement for text classification: a probability-based multi-label method, an ensemble system, and instruction tuning. All three approaches are evaluated on the tasks of hate speech and abusive conversation detection, which inherently entail a high degree of subjectivity. Moreover, to evaluate the effectiveness of embracing annotation disagreements for model training, we conduct an online survey that compares the performance of the multi-label model against a baseline model, which is trained with the majority label. The results show that in hate speech detection, the multi-label method outperforms the other two approaches, while in abusive conversation detection, instruction tuning achieves the best performance. The results of the survey also show that the outputs from the multi-label models are considered a better representation of the texts than the single-label model.
Abstract:The quantity of processed data is crucial for advancing the field of singing voice synthesis. While there are tools available for lyric or note transcription tasks, they all need pre-processed data which is relatively time-consuming (e.g., vocal and accompaniment separation). Besides, most of these tools are designed to address a single task and struggle with aligning lyrics and notes (i.e., identifying the corresponding notes of each word in lyrics). To address those challenges, we first design a pipeline by optimizing existing tools and annotating numerous lyric-note pairs of songs. Then, based on the annotated data, we train a unified SongTrans model that can directly transcribe lyrics and notes while aligning them simultaneously, without requiring pre-processing songs. Our SongTrans model consists of two modules: (1) the \textbf{Autoregressive module} predicts the lyrics, along with the duration and note number corresponding to each word in a lyric. (2) the \textbf{Non-autoregressive module} predicts the pitch and duration of the notes. Our experiments demonstrate that SongTrans achieves state-of-the-art (SOTA) results in both lyric and note transcription tasks. Furthermore, it is the first model capable of aligning lyrics with notes. Experimental results demonstrate that the SongTrans model can effectively adapt to different types of songs (e.g., songs with accompaniment), showcasing its versatility for real-world applications.
Abstract:This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
Abstract:We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. In contrast to complex hierarchical tags, we have simplified the pre-training process by utilizing natural language prompts for different data and tasks, and have further expanded the data volume. We have boosted the instruction-following capability of Qwen2-Audio and implemented two distinct audio interaction modes for voice chat and audio analysis. In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input. In the audio analysis mode, users could provide audio and text instructions for analysis during the interaction. Note that we do not use any system prompts to switch between voice chat and audio analysis modes. Qwen2-Audio is capable of intelligently comprehending the content within audio and following voice commands to respond appropriately. For instance, in an audio segment that simultaneously contains sounds, multi-speaker conversations, and a voice command, Qwen2-Audio can directly understand the command and provide an interpretation and response to the audio. Additionally, DPO has optimized the model's performance in terms of factuality and adherence to desired behavior. According to the evaluation results from AIR-Bench, Qwen2-Audio outperformed previous SOTAs, such as Gemini-1.5-pro, in tests focused on audio-centric instruction-following capabilities. Qwen2-Audio is open-sourced with the aim of fostering the advancement of the multi-modal language community.