Abstract:The latest advancements in large language models (LLMs) have sparked interest in their potential for software vulnerability detection. However, there is currently a lack of research specifically focused on vulnerabilities in the PHP language, and challenges in extracting samples and processing persist, hindering the model's ability to effectively capture the characteristics of specific vulnerabilities. In this paper, we present RealVul, the first LLM-based framework designed for PHP vulnerability detection, addressing these issues. By vulnerability candidate detection methods and employing techniques such as normalization, we can isolate potential vulnerability triggers while streamlining the code and eliminating unnecessary semantic information, enabling the model to better understand and learn from the generated vulnerability samples. We also address the issue of insufficient PHP vulnerability samples by improving data synthesis methods. To evaluate RealVul's performance, we conduct an extensive analysis using five distinct code LLMs on vulnerability data from 180 PHP projects. The results demonstrate a significant improvement in both effectiveness and generalization compared to existing methods, effectively boosting the vulnerability detection capabilities of these models.
Abstract:Cooperative Multi-Agent Reinforcement Learning (CMARL) strategies are well known to be vulnerable to adversarial perturbations. Previous works on adversarial attacks have primarily focused on white-box attacks that directly perturb the states or actions of victim agents, often in scenarios with a limited number of attacks. However, gaining complete access to victim agents in real-world environments is exceedingly difficult. To create more realistic adversarial attacks, we introduce a novel method that involves injecting traitor agents into the CMARL system. We model this problem as a Traitor Markov Decision Process (TMDP), where traitors cannot directly attack the victim agents but can influence their formation or positioning through collisions. In TMDP, traitors are trained using the same MARL algorithm as the victim agents, with their reward function set as the negative of the victim agents' reward. Despite this, the training efficiency for traitors remains low because it is challenging for them to directly associate their actions with the victim agents' rewards. To address this issue, we propose the Curiosity-Driven Adversarial Attack (CuDA2) framework. CuDA2 enhances the efficiency and aggressiveness of attacks on the specified victim agents' policies while maintaining the optimal policy invariance of the traitors. Specifically, we employ a pre-trained Random Network Distillation (RND) module, where the extra reward generated by the RND module encourages traitors to explore states unencountered by the victim agents. Extensive experiments on various scenarios from SMAC demonstrate that our CuDA2 framework offers comparable or superior adversarial attack capabilities compared to other baselines.
Abstract:Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs). Targeting its bottleneck of retriever performance, "generate-then-read" pipeline is proposed to replace the retrieval stage with generation from the LLM itself. Although promising, this research direction is underexplored and still cannot work in the scenario when source knowledge is given. In this paper, we formalize a general "A + B" framework with varying combinations of foundation models and types for systematic investigation. We explore the efficacy of the base and chat versions of LLMs and found their different functionalities suitable for generator A and reader B, respectively. Their combinations consistently outperform single models, especially in complex scenarios. Furthermore, we extend the application of the "A + B" framework to scenarios involving source documents through continuous learning, enabling the direct integration of external knowledge into LLMs. This approach not only facilitates effective acquisition of new knowledge but also addresses the challenges of safety and helpfulness post-adaptation. The paper underscores the versatility of the "A + B" framework, demonstrating its potential to enhance the practical application of LLMs across various domains.
Abstract:Recent advancements in social bot detection have been driven by the adoption of Graph Neural Networks. The social graph, constructed from social network interactions, contains benign and bot accounts that influence each other. However, previous graph-based detection methods that follow the transductive message-passing paradigm may not fully utilize hidden graph information and are vulnerable to adversarial bot behavior. The indiscriminate message passing between nodes from different categories and communities results in excessively homogeneous node representations, ultimately reducing the effectiveness of social bot detectors. In this paper, we propose SEBot, a novel multi-view graph-based contrastive learning-enabled social bot detector. In particular, we use structural entropy as an uncertainty metric to optimize the entire graph's structure and subgraph-level granularity, revealing the implicitly existing hierarchical community structure. And we design an encoder to enable message passing beyond the homophily assumption, enhancing robustness to adversarial behaviors of social bots. Finally, we employ multi-view contrastive learning to maximize mutual information between different views and enhance the detection performance through multi-task learning. Experimental results demonstrate that our approach significantly improves the performance of social bot detection compared with SOTA methods.
Abstract:Detecting social bots has evolved into a pivotal yet intricate task, aimed at combating the dissemination of misinformation and preserving the authenticity of online interactions. While earlier graph-based approaches, which leverage topological structure of social networks, yielded notable outcomes, they overlooked the inherent dynamicity of social networks -- In reality, they largely depicted the social network as a static graph and solely relied on its most recent state. Due to the absence of dynamicity modeling, such approaches are vulnerable to evasion, particularly when advanced social bots interact with other users to camouflage identities and escape detection. To tackle these challenges, we propose BotDGT, a novel framework that not only considers the topological structure, but also effectively incorporates dynamic nature of social network. Specifically, we characterize a social network as a dynamic graph. A structural module is employed to acquire topological information from each historical snapshot. Additionally, a temporal module is proposed to integrate historical context and model the evolving behavior patterns exhibited by social bots and legitimate users. Experimental results demonstrate the superiority of BotDGT against the leading methods that neglected the dynamic nature of social networks in terms of accuracy, recall, and F1-score.
Abstract:Text-to-3D scene generation holds immense potential for the gaming, film, and architecture sectors. Despite significant progress, existing methods struggle with maintaining high quality, consistency, and editing flexibility. In this paper, we propose DreamScene, a 3D Gaussian-based novel text-to-3D scene generation framework, to tackle the aforementioned three challenges mainly via two strategies. First, DreamScene employs Formation Pattern Sampling (FPS), a multi-timestep sampling strategy guided by the formation patterns of 3D objects, to form fast, semantically rich, and high-quality representations. FPS uses 3D Gaussian filtering for optimization stability, and leverages reconstruction techniques to generate plausible textures. Second, DreamScene employs a progressive three-stage camera sampling strategy, specifically designed for both indoor and outdoor settings, to effectively ensure object-environment integration and scene-wide 3D consistency. Last, DreamScene enhances scene editing flexibility by integrating objects and environments, enabling targeted adjustments. Extensive experiments validate DreamScene's superiority over current state-of-the-art techniques, heralding its wide-ranging potential for diverse applications. Code and demos will be released at https://dreamscene-project.github.io .
Abstract:The escalating quality of video generated by advanced video generation methods leads to new security challenges in society, which makes generated video detection an urgent research priority. To foster collaborative research in this area, we construct the first open-source dataset explicitly for generated video detection, providing a valuable resource for the community to benchmark and improve detection methodologies. Through a series of carefully designed probe experiments, our study explores the significance of temporal and spatial artifacts in developing general and robust detectors for generated video. Based on the principle of video frame consistency, we introduce a simple yet effective detection model (DeCoF) that eliminates the impact of spatial artifacts during generalizing feature learning. Our extensive experiments demonstrate the efficacy of DeCoF in detecting videos produced by unseen video generation models and confirm its powerful generalization capabilities across several commercial proprietary models.
Abstract:Neural radiance fields (NeRF) have been proposed as an innovative 3D representation method. While attracting lots of attention, NeRF faces critical issues such as information confidentiality and security. Steganography is a technique used to embed information in another object as a means of protecting information security. Currently, there are few related studies on NeRF steganography, facing challenges in low steganography quality, model weight damage, and a limited amount of steganographic information. This paper proposes a novel NeRF steganography method based on trainable noise: Noise-NeRF. Furthermore, we propose the Adaptive Pixel Selection strategy and Pixel Perturbation strategy to improve the steganography quality and efficiency. The extensive experiments on open-source datasets show that Noise-NeRF provides state-of-the-art performances in both steganography quality and rendering quality, as well as effectiveness in super-resolution image steganography.
Abstract:Recently, 3D Gaussian, as an explicit 3D representation method, has demonstrated strong competitiveness over NeRF (Neural Radiance Fields) in terms of expressing complex scenes and training duration. These advantages signal a wide range of applications for 3D Gaussians in 3D understanding and editing. Meanwhile, the segmentation of 3D Gaussians is still in its infancy. The existing segmentation methods are not only cumbersome but also incapable of segmenting multiple objects simultaneously in a short amount of time. In response, this paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision. This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information, while nearest neighbor clustering and statistical filtering refine the segmentation results. Experiments show that our concise method can achieve comparable performances on mIOU and mAcc for multi-object segmentation as previous single-object segmentation methods.
Abstract:Knowledge graph completion (KGC) aims to predict missing facts in knowledge graphs (KGs), which is crucial as modern KGs remain largely incomplete. While training KGC models on multiple aligned KGs can improve performance, previous methods that rely on transferring raw data among KGs raise privacy concerns. To address this challenge, we propose a new federated learning framework that implicitly aggregates knowledge from multiple KGs without demanding raw data exchange and entity alignment. We treat each KG as a client that trains a local language model through textbased knowledge representation learning. A central server then aggregates the model weights from clients. As natural language provides a universal representation, the same knowledge thus has similar semantic representations across KGs. As such, the aggregated language model can leverage complementary knowledge from multilingual KGs without demanding raw user data sharing. Extensive experiments on a benchmark dataset demonstrate that our method substantially improves KGC on multilingual KGs, achieving comparable performance to state-of-the-art alignment-based models without requiring any labeled alignments or raw user data sharing. Our codes will be publicly available.