Abstract:Cross-lingual semantic textual relatedness task is an important research task that addresses challenges in cross-lingual communication and text understanding. It helps establish semantic connections between different languages, crucial for downstream tasks like machine translation, multilingual information retrieval, and cross-lingual text understanding.Based on extensive comparative experiments, we choose the XLM-R-base as our base model and use pre-trained sentence representations based on whitening to reduce anisotropy.Additionally, for the given training data, we design a delicate data filtering method to alleviate the curse of multilingualism. With our approach, we achieve a 2nd score in Spanish, a 3rd in Indonesian, and multiple entries in the top ten results in the competition's track C. We further do a comprehensive analysis to inspire future research aimed at improving performance on cross-lingual tasks.
Abstract:The escalating quality of video generated by advanced video generation methods leads to new security challenges in society, which makes generated video detection an urgent research priority. To foster collaborative research in this area, we construct the first open-source dataset explicitly for generated video detection, providing a valuable resource for the community to benchmark and improve detection methodologies. Through a series of carefully designed probe experiments, our study explores the significance of temporal and spatial artifacts in developing general and robust detectors for generated video. Based on the principle of video frame consistency, we introduce a simple yet effective detection model (DeCoF) that eliminates the impact of spatial artifacts during generalizing feature learning. Our extensive experiments demonstrate the efficacy of DeCoF in detecting videos produced by unseen video generation models and confirm its powerful generalization capabilities across several commercial proprietary models.