Max
Abstract:Understanding the multi-dimensional attributes and intensity nuances of image-evoked emotions is pivotal for advancing machine empathy and empowering diverse human-computer interaction applications. However, existing models are still limited to coarse-grained emotion perception or deficient reasoning capabilities. To bridge this gap, we introduce EEmoDB, the largest image-evoked emotion understanding dataset to date. It features $5$ analysis dimensions spanning $5$ distinct task categories, facilitating comprehensive interpretation. Specifically, we compile $1.2M$ question-answering (QA) pairs (EEmoDB-QA) from $125k$ images via automated generation, alongside a $36k$ dataset (EEmoDB-Assess) curated from $25k$ images for fine-grained assessment. Furthermore, we propose EEmo-Logic, an all-in-one multimodal large language model (MLLM) developed via instruction fine-tuning and task-customized group relative preference optimization (GRPO) with novel reward design. Extensive experiments demonstrate that EEmo-Logic achieves robust performance in in-domain and cross-domain datasets, excelling in emotion QA and fine-grained assessment. The code is available at https://anonymous.4open.science/r/EEmoLogic.
Abstract:Accurate reconstruction of atmospheric wind fields is essential for applications such as weather forecasting, hazard prediction, and wind energy assessment, yet conventional instruments leave spatio-temporal gaps within the lower atmospheric boundary layer. Unmanned aircraft systems (UAS) provide flexible in situ measurements, but individual platforms sample wind only along their flight trajectories, limiting full wind-field recovery. This study presents a framework for reconstructing four-dimensional atmospheric wind fields using measurements obtained from a coordinated UAS swarm. A synthetic turbulence environment and high-fidelity multirotor simulation are used to generate training and evaluation data. Local wind components are estimated from UAS dynamics using a bidirectional long short-term memory network (Bi-LSTM) and assimilated into a physics-informed neural network (PINN) to reconstruct a continuous wind field in space and time. For local wind estimation, the bidirectional LSTM achieves root-mean-square errors (RMSE) of 0.064 and 0.062 m/s for the north and east components in low-wind conditions, increasing to 0.122 to 0.129 m/s under moderate winds and 0.271 to 0.273 m/s in high-wind conditions, while the vertical component exhibits higher error, with RMSE values of 0.029 to 0.091 m/s. The physics-informed reconstruction recovers the dominant spatial and temporal structure of the wind field up to 1000 m altitude while preserving mean flow direction and vertical shear. Under moderate wind conditions, the reconstructed mean wind field achieves an overall RMSE between 0.118 and 0.154 m/s across evaluated UAS configurations, with the lowest error obtained using a five-UAS swarm. These results demonstrate that coordinated UAS measurements enable accurate and scalable four-dimensional wind-field reconstruction without dedicated wind sensors or fixed infrastructure.
Abstract:Large vision-language models (LVLMs) exhibit remarkable capabilities in cross-modal tasks but face significant safety challenges, which undermine their reliability in real-world applications. Efforts have been made to build LVLM safety evaluation benchmarks to uncover their vulnerability. However, existing benchmarks are hindered by their labor-intensive construction process, static complexity, and limited discriminative power. Thus, they may fail to keep pace with rapidly evolving models and emerging risks. To address these limitations, we propose VLSafetyBencher, the first automated system for LVLM safety benchmarking. VLSafetyBencher introduces four collaborative agents: Data Preprocessing, Generation, Augmentation, and Selection agents to construct and select high-quality samples. Experiments validates that VLSafetyBencher can construct high-quality safety benchmarks within one week at a minimal cost. The generated benchmark effectively distinguish safety, with a safety rate disparity of 70% between the most and least safe models.
Abstract:Visual quality assessment (VQA) is increasingly shifting from scalar score prediction toward interpretable quality understanding -- a paradigm that demands \textit{fine-grained spatiotemporal perception} and \textit{auxiliary contextual information}. Current approaches rely on supervised fine-tuning or reinforcement learning on curated instruction datasets, which involve labor-intensive annotation and are prone to dataset-specific biases. To address these challenges, we propose \textbf{QualiRAG}, a \textit{training-free} \textbf{R}etrieval-\textbf{A}ugmented \textbf{G}eneration \textbf{(RAG)} framework that systematically leverages the latent perceptual knowledge of large multimodal models (LMMs) for visual quality perception. Unlike conventional RAG that retrieves from static corpora, QualiRAG dynamically generates auxiliary knowledge by decomposing questions into structured requests and constructing four complementary knowledge sources: \textit{visual metadata}, \textit{subject localization}, \textit{global quality summaries}, and \textit{local quality descriptions}, followed by relevance-aware retrieval for evidence-grounded reasoning. Extensive experiments show that QualiRAG achieves substantial improvements over open-source general-purpose LMMs and VQA-finetuned LMMs on visual quality understanding tasks, and delivers competitive performance on visual quality comparison tasks, demonstrating robust quality assessment capabilities without any task-specific training. The code will be publicly available at https://github.com/clh124/QualiRAG.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.




Abstract:Identifying and addressing performance anti-patterns in machine learning (ML) models is critical for efficient training and inference, but it typically demands deep expertise spanning system infrastructure, ML models and kernel development. While large tech companies rely on dedicated ML infrastructure engineers to analyze torch traces and benchmarks, such resource-intensive workflows are largely inaccessible to computer vision researchers in general. Among the challenges, pinpointing problematic trace segments within lengthy execution traces remains the most time-consuming task, and is difficult to automate with current ML models, including LLMs. In this work, we present the first benchmark dataset specifically designed to evaluate and improve ML models' ability to detect anti patterns in traces. Our dataset contains over 600 PyTorch traces from diverse computer vision models classification, detection, segmentation, and generation collected across multiple hardware platforms. We also propose a novel iterative approach: a lightweight ML model first detects trace segments with anti patterns, followed by a large language model (LLM) for fine grained classification and targeted feedback. Experimental results demonstrate that our method significantly outperforms unsupervised clustering and rule based statistical techniques for detecting anti pattern regions. Our method also effectively compensates LLM's limited context length and reasoning inefficiencies.




Abstract:Accurate geometric modeling of the aortic valve from 3D CT images is essential for biomechanical analysis and patient-specific simulations to assess valve health or make a preoperative plan. However, it remains challenging to generate aortic valve meshes with both high-quality and consistency across different patients. Traditional approaches often produce triangular meshes with irregular topologies, which can result in poorly shaped elements and inconsistent correspondence due to inter-patient anatomical variation. In this work, we address these challenges by introducing a template-fitting pipeline with deep neural networks to generate structured quad (i.e., quadrilateral) meshes from 3D CT images to represent aortic valve geometries. By remeshing aortic valves of all patients with a common quad mesh template, we ensure a uniform mesh topology with consistent node-to-node and element-to-element correspondence across patients. This consistency enables us to simplify the learning objective of the deep neural networks, by employing a loss function with only two terms (i.e., a geometry reconstruction term and a smoothness regularization term), which is sufficient to preserve mesh smoothness and element quality. Our experiments demonstrate that the proposed approach produces high-quality aortic valve surface meshes with improved smoothness and shape quality, while requiring fewer explicit regularization terms compared to the traditional methods. These results highlight that using structured quad meshes for the template and neural network training not only ensures mesh correspondence and quality but also simplifies the training process, thus enhancing the effectiveness and efficiency of aortic valve modeling.
Abstract:The strong zero-shot and long-context capabilities of recent Large Language Models (LLMs) have paved the way for highly effective re-ranking systems. Attention-based re-rankers leverage attention weights from transformer heads to produce relevance scores, but not all heads are created equally: many contribute noise and redundancy, thus limiting performance. To address this, we introduce CoRe heads, a small set of retrieval heads identified via a contrastive scoring metric that explicitly rewards high attention heads that correlate with relevant documents, while downplaying nodes with higher attention that correlate with irrelevant documents. This relative ranking criterion isolates the most discriminative heads for re-ranking and yields a state-of-the-art list-wise re-ranker. Extensive experiments with three LLMs show that aggregated signals from CoRe heads, constituting less than 1% of all heads, substantially improve re-ranking accuracy over strong baselines. We further find that CoRe heads are concentrated in middle layers, and pruning the computation of final 50% of model layers preserves accuracy while significantly reducing inference time and memory usage.
Abstract:The aorta is the body's largest arterial vessel, serving as the primary pathway for oxygenated blood within the systemic circulation. Aortic aneurysms consistently rank among the top twenty causes of mortality in the United States. Thoracic aortic aneurysm (TAA) arises from abnormal dilation of the thoracic aorta and remains a clinically significant disease, ranking as one of the leading causes of death in adults. A thoracic aortic aneurysm ruptures when the integrity of all aortic wall layers is compromised due to elevated blood pressure. Currently, three-dimensional computed tomography (3D CT) is considered the gold standard for diagnosing TAA. The geometric characteristics of the aorta, which can be quantified from medical imaging, and stresses on the aortic wall, which can be obtained by finite element analysis (FEA), are critical in evaluating the risk of rupture and dissection. Deep learning based image segmentation has emerged as a reliable method for extracting anatomical regions of interest from medical images. Voxel based segmentation masks of anatomical structures are typically converted into structured mesh representation to enable accurate simulation. Hexahedral meshes are commonly used in finite element simulations of the aorta due to their computational efficiency and superior simulation accuracy. Due to anatomical variability, patient specific modeling enables detailed assessment of individual anatomical and biomechanics behaviors, supporting precise simulations, accurate diagnoses, and personalized treatment strategies. Finite element (FE) simulations provide valuable insights into the biomechanical behaviors of tissues and organs in clinical studies. Developing accurate FE models represents a crucial initial step in establishing a patient-specific, biomechanically based framework for predicting the risk of TAA.




Abstract:This paper presents a summary of the VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models (LMMs), hosted as part of the ICCV 2025 Workshop on Visual Quality Assessment. The challenge aims to evaluate and enhance the ability of state-of-the-art LMMs to perform open-ended and detailed reasoning about visual quality differences across multiple images. To this end, the competition introduces a novel benchmark comprising thousands of coarse-to-fine grained visual quality comparison tasks, spanning single images, pairs, and multi-image groups. Each task requires models to provide accurate quality judgments. The competition emphasizes holistic evaluation protocols, including 2AFC-based binary preference and multi-choice questions (MCQs). Around 100 participants submitted entries, with five models demonstrating the emerging capabilities of instruction-tuned LMMs on quality assessment. This challenge marks a significant step toward open-domain visual quality reasoning and comparison and serves as a catalyst for future research on interpretable and human-aligned quality evaluation systems.