Abstract:High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
Abstract:Deepfake videos are causing growing concerns among communities due to their ever-increasing realism. Naturally, automated detection of forged Deepfake videos is attracting a proportional amount of interest of researchers. Current methods for detecting forged videos mainly rely on global frame features and under-utilize the spatio-temporal inconsistencies found in the manipulated videos. Moreover, they fail to attend to manipulation-specific subtle and well-localized pattern variations along both spatial and temporal dimensions. Addressing these gaps, we propose a neural Deepfake detector that focuses on the localized manipulative signatures of the forged videos at individual frame level as well as frame sequence level. Using a ResNet backbone, it strengthens the shallow frame-level feature learning with a spatial attention mechanism. The spatial stream of the model is further helped by fusing texture enhanced shallow features with the deeper features. Simultaneously, the model processes frame sequences with a distance attention mechanism that further allows fusion of temporal attention maps with the learned features at the deeper layers. The overall model is trained to detect forged content as a classifier. We evaluate our method on two popular large data sets and achieve significant performance over the state-of-the-art methods.Moreover, our technique also provides memory and computational advantages over the competitive techniques.
Abstract:Road information extraction from 3D point clouds is useful for urban planning and traffic management. Existing methods often rely on local features and the refraction angle of lasers from kerbs, which makes them sensitive to variable kerb designs and issues in high-density areas due to data homogeneity. We propose an approach for extracting road points and fitting centrelines using a top-down view of LiDAR based ground-collected point clouds. This prospective view reduces reliance on specific kerb design and results in better road extraction. We first perform statistical outlier removal and density-based clustering to reduce noise from 3D point cloud data. Next, we perform ground point filtering using a grid-based segmentation method that adapts to diverse road scenarios and terrain characteristics. The filtered points are then projected onto a 2D plane, and the road is extracted by a skeletonisation algorithm. The skeleton is back-projected onto the 3D point cloud with calculated normals, which guide a region growing algorithm to find nearby road points. The extracted road points are then smoothed with the Savitzky-Golay filter to produce the final centreline. Our initial approach without post-processing of road skeleton achieved 67% in IoU by testing on the Perth CBD dataset with different road types. Incorporating the post-processing of the road skeleton improved the extraction of road points around the smoothed skeleton. The refined approach achieved a higher IoU value of 73% and with 23% reduction in the processing time. Our approach offers a generalised and computationally efficient solution that combines 3D and 2D processing techniques, laying the groundwork for future road reconstruction and 3D-to-2D point cloud alignment.
Abstract:Point cloud registration is an essential step for free-form blade reconstruction in industrial measurement. Nonetheless, measuring defects of the 3D acquisition system unavoidably result in noisy and incomplete point cloud data, which renders efficient and accurate registration challenging. In this paper, we propose a novel global registration method that is based on the minimum potential energy (MPE) method to address these problems. The basic strategy is that the objective function is defined as the minimum potential energy optimization function of the physical registration system. The function distributes more weight to the majority of inlier points and less weight to the noise and outliers, which essentially reduces the influence of perturbations in the mathematical formulation. We decompose the solution into a globally optimal approximation procedure and a fine registration process with the trimmed iterative closest point algorithm to boost convergence. The approximation procedure consists of two main steps. First, according to the construction of the force traction operator, we can simply compute the position of the potential energy minimum. Second, to find the MPE point, we propose a new theory that employs two flags to observe the status of the registration procedure. We demonstrate the performance of the proposed algorithm on four types of blades. The proposed method outperforms the other global methods in terms of both accuracy and noise resistance.
Abstract:Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
Abstract:Neural network training tends to exploit the simplest features as shortcuts to greedily minimize training loss. However, some of these features might be spuriously correlated with the target labels, leading to incorrect predictions by the model. Several methods have been proposed to address this issue. Focusing on suppressing the spurious correlations with model training, they not only incur additional training cost, but also have limited practical utility as the model misbehavior due to spurious relations is usually discovered after its deployment. It is also often overlooked that spuriousness is a subjective notion. Hence, the precise questions that must be investigated are; to what degree a feature is spurious, and how we can proportionally distract the model's attention from it for reliable prediction. To this end, we propose a method that enables post-hoc neutralization of spurious feature impact, controllable to an arbitrary degree. We conceptualize spurious features as fictitious sub-classes within the original classes, which can be eliminated by a class removal scheme. We then propose a unique precise class removal technique that employs a single-weight modification, which entails negligible performance compromise for the remaining classes. We perform extensive experiments, demonstrating that by editing just a single weight in a post-hoc manner, our method achieves highly competitive, or better performance against the state-of-the-art methods.
Abstract:The widespread availability of multimodal generative models has sparked critical discussions on their fairness, reliability, and potential for misuse. While text-to-image models can produce high-fidelity, user-guided images, they also exhibit unpredictable behavior and vulnerabilities, which can be exploited to manipulate class or concept representations. To address this, we propose an evaluation framework designed to assess model reliability through their responses to globally- and locally-applied `semantic' perturbations in the embedding space, pinpointing inputs that trigger unreliable behavior. Our approach offers deeper insights into two essential aspects: (i) generative diversity, evaluating the breadth of visual representations for learned concepts, and (ii) generative fairness, examining how removing concepts from input prompts affects semantic guidance. Beyond these evaluations, our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance. We will release our code. Keywords: Fairness, Reliability, AI Ethics, Bias, Text-to-Image Models
Abstract:Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we propose a modular, dynamic solution that leverages safety-context embeddings and a dual reconstruction process using tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks, while offering controllable variation of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
Abstract:Lossy compression methods rely on an autoencoder to transform a point cloud into latent points for storage, leaving the inherent redundancy of latent representations unexplored. To reduce redundancy in latent points, we propose a sparse priors guided method that achieves high reconstruction quality, especially at high compression ratios. This is accomplished by a dual-density scheme separately processing the latent points (intended for reconstruction) and the decoupled sparse priors (intended for storage). Our approach features an efficient dual-density data flow that relaxes size constraints on latent points, and hybridizes a progressive conditional diffusion model to encapsulate essential details for reconstruction within the conditions, which are decoupled hierarchically to intra-point and inter-point priors. Specifically, our method encodes the original point cloud into latent points and decoupled sparse priors through separate encoders. Latent points serve as intermediates, while sparse priors act as adaptive conditions. We then employ a progressive attention-based conditional denoiser to generate latent points conditioned on the decoupled priors, allowing the denoiser to dynamically attend to geometric and semantic cues from the priors at each encoding and decoding layer. Additionally, we integrate the local distribution into the arithmetic encoder and decoder to enhance local context modeling of the sparse points. The original point cloud is reconstructed through a point decoder. Compared to state-of-the-art, our method obtains superior rate-distortion trade-off, evidenced by extensive evaluations on the ShapeNet dataset and standard test datasets from MPEG group including 8iVFB, and Owlii.
Abstract:We introduce Referring Human Pose and Mask Estimation (R-HPM) in the wild, where either a text or positional prompt specifies the person of interest in an image. This new task holds significant potential for human-centric applications such as assistive robotics and sports analysis. In contrast to previous works, R-HPM (i) ensures high-quality, identity-aware results corresponding to the referred person, and (ii) simultaneously predicts human pose and mask for a comprehensive representation. To achieve this, we introduce a large-scale dataset named RefHuman, which substantially extends the MS COCO dataset with additional text and positional prompt annotations. RefHuman includes over 50,000 annotated instances in the wild, each equipped with keypoint, mask, and prompt annotations. To enable prompt-conditioned estimation, we propose the first end-to-end promptable approach named UniPHD for R-HPM. UniPHD extracts multimodal representations and employs a proposed pose-centric hierarchical decoder to process (text or positional) instance queries and keypoint queries, producing results specific to the referred person. Extensive experiments demonstrate that UniPHD produces quality results based on user-friendly prompts and achieves top-tier performance on RefHuman val and MS COCO val2017. Data and Code: https://github.com/bo-miao/RefHuman