Abstract:With the growing applications of Deep Learning (DL), especially recent spectacular achievements of Large Language Models (LLMs) such as ChatGPT and LLaMA, the commercial significance of these remarkable models has soared. However, acquiring well-trained models is costly and resource-intensive. It requires a considerable high-quality dataset, substantial investment in dedicated architecture design, expensive computational resources, and efforts to develop technical expertise. Consequently, safeguarding the Intellectual Property (IP) of well-trained models is attracting increasing attention. In contrast to existing surveys overwhelmingly focusing on model IPP mainly, this survey not only encompasses the protection on model level intelligence but also valuable dataset intelligence. Firstly, according to the requirements for effective IPP design, this work systematically summarizes the general and scheme-specific performance evaluation metrics. Secondly, from proactive IP infringement prevention and reactive IP ownership verification perspectives, it comprehensively investigates and analyzes the existing IPP methods for both dataset and model intelligence. Additionally, from the standpoint of training settings, it delves into the unique challenges that distributed settings pose to IPP compared to centralized settings. Furthermore, this work examines various attacks faced by deep IPP techniques. Finally, we outline prospects for promising future directions that may act as a guide for innovative research.
Abstract:Radio frequency fingerprint identification (RFFI) is becoming increasingly popular, especially in applications with constrained power, such as the Internet of Things (IoT). Due to subtle manufacturing variations, wireless devices have unique radio frequency fingerprints (RFFs). These RFFs can be used with pattern recognition algorithms to classify wireless devices. However, Implementing reliable RFFI in time-varying channels is challenging because RFFs are often distorted by channel effects, reducing the classification accuracy. This paper introduces a new channel-robust RFF, and leverages transfer learning to enhance RFFI in the time-varying channels. Experimental results show that the proposed RFFI system achieved an average classification accuracy improvement of 33.3 % in indoor environments and 34.5 % in outdoor environments. This paper also analyzes the security of the proposed RFFI system to address the security flaw in formalized impersonation attacks. Since RFF collection is being carried out in uncontrolled deployment environments, RFFI systems can be targeted with false RFFs sent by rogue devices. The resulting classifiers may classify the rogue devices as legitimate, effectively replacing their true identities. To defend against impersonation attacks, a novel keyless countermeasure is proposed, which exploits the intrinsic output of the softmax function after classifier training without sacrificing the lightweight nature of RFFI. Experimental results demonstrate an average increase of 0.3 in the area under the receiver operating characteristic curve (AUC), with a 40.0 % improvement in attack detection rate in indoor and outdoor environments.
Abstract:Text-to-image diffusion models have achieved tremendous success in the field of controllable image generation, while also coming along with issues of privacy leakage and data copyrights. Membership inference arises in these contexts as a potential auditing method for detecting unauthorized data usage. While some efforts have been made on diffusion models, they are not applicable to text-to-image diffusion models due to the high computation overhead and enhanced generalization capabilities. In this paper, we first identify a conditional overfitting phenomenon in text-to-image diffusion models, indicating that these models tend to overfit the conditional distribution of images given the text rather than the marginal distribution of images. Based on this observation, we derive an analytical indicator, namely Conditional Likelihood Discrepancy (CLiD), to perform membership inference. This indicator reduces the stochasticity in estimating the memorization of individual samples. Experimental results demonstrate that our method significantly outperforms previous methods across various data distributions and scales. Additionally, our method shows superior resistance to overfitting mitigation strategies such as early stopping and data augmentation.
Abstract:Personal digital data is a critical asset, and governments worldwide have enforced laws and regulations to protect data privacy. Data users have been endowed with the right to be forgotten of their data. In the course of machine learning (ML), the forgotten right requires a model provider to delete user data and its subsequent impact on ML models upon user requests. Machine unlearning emerges to address this, which has garnered ever-increasing attention from both industry and academia. While the area has developed rapidly, there is a lack of comprehensive surveys to capture the latest advancements. Recognizing this shortage, we conduct an extensive exploration to map the landscape of machine unlearning including the (fine-grained) taxonomy of unlearning algorithms under centralized and distributed settings, debate on approximate unlearning, verification and evaluation metrics, challenges and solutions for unlearning under different applications, as well as attacks targeting machine unlearning. The survey concludes by outlining potential directions for future research, hoping to serve as a guide for interested scholars.
Abstract:All existing backdoor attacks to deep learning (DL) models belong to the vertical class backdoor (VCB). That is, any sample from a class will activate the implanted backdoor in the presence of the secret trigger, regardless of source-class-agnostic or source-class-specific backdoor. Current trends of existing defenses are overwhelmingly devised for VCB attacks especially the source-class-agnostic backdoor, which essentially neglects other potential simple but general backdoor types, thus giving false security implications. It is thus urgent to discover unknown backdoor types. This work reveals a new, simple, and general horizontal class backdoor (HCB) attack. We show that the backdoor can be naturally bounded with innocuous natural features that are common and pervasive in the real world. Note that an innocuous feature (e.g., expression) is irrelevant to the main task of the model (e.g., recognizing a person from one to another). The innocuous feature spans across classes horizontally but is exhibited by partial samples per class -- satisfying the horizontal class (HC) property. Only when the trigger is concurrently presented with the HC innocuous feature, can the backdoor be effectively activated. Extensive experiments on attacking performance in terms of high attack success rates with tasks of 1) MNIST, 2) facial recognition, 3) traffic sign recognition, and 4) object detection demonstrate that the HCB is highly efficient and effective. We extensively evaluate the HCB evasiveness against a (chronologically) series of 9 influential countermeasures of Fine-Pruning (RAID 18'), STRIP (ACSAC 19'), Neural Cleanse (Oakland 19'), ABS (CCS 19'), Februus (ACSAC 20'), MNTD (Oakland 21'), SCAn (USENIX SEC 21'), MOTH (Oakland 22'), and Beatrix (NDSS 23'), where none of them can succeed even when a simplest trigger is used.
Abstract:Denoising diffusion probabilistic models (DDPMs) are a class of powerful generative models. The past few years have witnessed the great success of DDPMs in generating high-fidelity samples. A significant limitation of the DDPMs is the slow sampling procedure. DDPMs generally need hundreds or thousands of sequential function evaluations (steps) of neural networks to generate a sample. This paper aims to develop a fast sampling method for DDPMs requiring much fewer steps while retaining high sample quality. The inference process of DDPMs approximates solving the corresponding diffusion ordinary differential equations (diffusion ODEs) in the continuous limit. This work analyzes how the backward error affects the diffusion ODEs and the sample quality in DDPMs. We propose fast sampling through the \textbf{Restricting Backward Error schedule (RBE schedule)} based on dynamically moderating the long-time backward error. Our method accelerates DDPMs without any further training. Our experiments show that sampling with an RBE schedule generates high-quality samples within only 8 to 20 function evaluations on various benchmark datasets. We achieved 12.01 FID in 8 function evaluations on the ImageNet $128\times128$, and a $20\times$ speedup compared with previous baseline samplers.
Abstract:Radio frequency fingerprint identification (RFFI) is a lightweight device authentication technique particularly desirable for power-constrained devices, e.g., the Internet of things (IoT) devices. Similar to biometric fingerprinting, RFFI exploits the intrinsic and unique hardware impairments resulting from manufacturing, such as power amplifier (PA) nonlinearity, to develop methods for device detection and classification. Due to the nature of wireless transmission, received signals are volatile when communication environments change. The resulting radio frequency fingerprints (RFFs) are distorted, leading to low device detection and classification accuracy. We propose a PA nonlinearity quotient and transfer learning classifier to design the environment-robust RFFI method. Firstly, we formalized and demonstrated that the PA nonlinearity quotient is independent of environmental changes. Secondly, we implemented transfer learning on a base classifier generated by data collected in an anechoic chamber, further improving device authentication and reducing disk and memory storage requirements. Extensive experiments, including indoor and outdoor settings, were carried out using LoRa devices. It is corroborated that the proposed PA nonlinearity quotient and transfer learning classifier significantly improved device detection and device classification accuracy. For example, the classification accuracy was improved by 33.3% and 34.5% under indoor and outdoor settings, respectively, compared to conventional deep learning and spectrogram-based classifiers.
Abstract:Federated learning (FL) is the most popular distributed machine learning technique. FL allows machine-learning models to be trained without acquiring raw data to a single point for processing. Instead, local models are trained with local data; the models are then shared and combined. This approach preserves data privacy as locally trained models are shared instead of the raw data themselves. Broadly, FL can be divided into horizontal federated learning (HFL) and vertical federated learning (VFL). For the former, different parties hold different samples over the same set of features; for the latter, different parties hold different feature data belonging to the same set of samples. In a number of practical scenarios, VFL is more relevant than HFL as different companies (e.g., bank and retailer) hold different features (e.g., credit history and shopping history) for the same set of customers. Although VFL is an emerging area of research, it is not well-established compared to HFL. Besides, VFL-related studies are dispersed, and their connections are not intuitive. Thus, this survey aims to bring these VFL-related studies to one place. Firstly, we classify existing VFL structures and algorithms. Secondly, we present the threats from security and privacy perspectives to VFL. Thirdly, for the benefit of future researchers, we discussed the challenges and prospects of VFL in detail.
Abstract:Training highly performant deep neural networks (DNNs) typically requires the collection of a massive dataset and the use of powerful computing resources. Therefore, unauthorized redistribution of private pre-trained DNNs may cause severe economic loss for model owners. For protecting the ownership of DNN models, DNN watermarking schemes have been proposed by embedding secret information in a DNN model and verifying its presence for model ownership. However, existing DNN watermarking schemes compromise the model utility and are vulnerable to watermark removal attacks because a model is modified with a watermark. Alternatively, a new approach dubbed DEEPJUDGE was introduced to measure the similarity between a suspect model and a victim model without modifying the victim model. However, DEEPJUDGE would only be designed to detect the case where a suspect model's architecture is the same as a victim model's. In this work, we propose a novel DNN fingerprinting technique dubbed DEEPTASTER to prevent a new attack scenario in which a victim's data is stolen to build a suspect model. DEEPTASTER can effectively detect such data theft attacks even when a suspect model's architecture differs from a victim model's. To achieve this goal, DEEPTASTER generates a few adversarial images with perturbations, transforms them into the Fourier frequency domain, and uses the transformed images to identify the dataset used in a suspect model. The intuition is that those adversarial images can be used to capture the characteristics of DNNs built on a specific dataset. We evaluated the detection accuracy of DEEPTASTER on three datasets with three model architectures under various attack scenarios, including transfer learning, pruning, fine-tuning, and data augmentation. Overall, DEEPTASTER achieves a balanced accuracy of 94.95%, which is significantly better than 61.11% achieved by DEEPJUDGE in the same settings.
Abstract:Object detection is the foundation of various critical computer-vision tasks such as segmentation, object tracking, and event detection. To train an object detector with satisfactory accuracy, a large amount of data is required. However, due to the intensive workforce involved with annotating large datasets, such a data curation task is often outsourced to a third party or relied on volunteers. This work reveals severe vulnerabilities of such data curation pipeline. We propose MACAB that crafts clean-annotated images to stealthily implant the backdoor into the object detectors trained on them even when the data curator can manually audit the images. We observe that the backdoor effect of both misclassification and the cloaking are robustly achieved in the wild when the backdoor is activated with inconspicuously natural physical triggers. Backdooring non-classification object detection with clean-annotation is challenging compared to backdooring existing image classification tasks with clean-label, owing to the complexity of having multiple objects within each frame, including victim and non-victim objects. The efficacy of the MACAB is ensured by constructively i abusing the image-scaling function used by the deep learning framework, ii incorporating the proposed adversarial clean image replica technique, and iii combining poison data selection criteria given constrained attacking budget. Extensive experiments demonstrate that MACAB exhibits more than 90% attack success rate under various real-world scenes. This includes both cloaking and misclassification backdoor effect even restricted with a small attack budget. The poisoned samples cannot be effectively identified by state-of-the-art detection techniques.The comprehensive video demo is at https://youtu.be/MA7L_LpXkp4, which is based on a poison rate of 0.14% for YOLOv4 cloaking backdoor and Faster R-CNN misclassification backdoor.