Abstract:Federated Learning (FL) allows users to collaboratively train a global machine learning model by sharing local model only, without exposing their private data to a central server. This distributed learning is particularly appealing in scenarios where data privacy is crucial, and it has garnered substantial attention from both industry and academia. However, studies have revealed privacy vulnerabilities in FL, where adversaries can potentially infer sensitive information from the shared model parameters. In this paper, we present an efficient masking-based secure aggregation scheme utilizing lightweight cryptographic primitives to mitigate privacy risks. Our scheme offers several advantages over existing methods. First, it requires only a single setup phase for the entire FL training session, significantly reducing communication overhead. Second, it minimizes user-side overhead by eliminating the need for user-to-user interactions, utilizing an intermediate server layer and a lightweight key negotiation method. Third, the scheme is highly resilient to user dropouts, and the users can join at any FL round. Fourth, it can detect and defend against malicious server activities, including recently discovered model inconsistency attacks. Finally, our scheme ensures security in both semi-honest and malicious settings. We provide security analysis to formally prove the robustness of our approach. Furthermore, we implemented an end-to-end prototype of our scheme. We conducted comprehensive experiments and comparisons, which show that it outperforms existing solutions in terms of communication and computation overhead, functionality, and security.
Abstract:Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.
Abstract:AI systems, in particular with deep learning techniques, have demonstrated superior performance for various real-world applications. Given the need for tailored optimization in specific scenarios, as well as the concerns related to the exploits of subsurface vulnerabilities, a more comprehensive and in-depth testing AI system becomes a pivotal topic. We have seen the emergence of testing tools in real-world applications that aim to expand testing capabilities. However, they often concentrate on ad-hoc tasks, rendering them unsuitable for simultaneously testing multiple aspects or components. Furthermore, trustworthiness issues arising from adversarial attacks and the challenge of interpreting deep learning models pose new challenges for developing more comprehensive and in-depth AI system testing tools. In this study, we design and implement a testing tool, \tool, to comprehensively and effectively evaluate AI systems. The tool extensively assesses multiple measurements towards adversarial robustness, model interpretability, and performs neuron analysis. The feasibility of the proposed testing tool is thoroughly validated across various modalities, including image classification, object detection, and text classification. Extensive experiments demonstrate that \tool is the state-of-the-art tool for a comprehensive assessment of the robustness and trustworthiness of AI systems. Our research sheds light on a general solution for AI systems testing landscape.
Abstract:Radio frequency fingerprint identification (RFFI) is becoming increasingly popular, especially in applications with constrained power, such as the Internet of Things (IoT). Due to subtle manufacturing variations, wireless devices have unique radio frequency fingerprints (RFFs). These RFFs can be used with pattern recognition algorithms to classify wireless devices. However, Implementing reliable RFFI in time-varying channels is challenging because RFFs are often distorted by channel effects, reducing the classification accuracy. This paper introduces a new channel-robust RFF, and leverages transfer learning to enhance RFFI in the time-varying channels. Experimental results show that the proposed RFFI system achieved an average classification accuracy improvement of 33.3 % in indoor environments and 34.5 % in outdoor environments. This paper also analyzes the security of the proposed RFFI system to address the security flaw in formalized impersonation attacks. Since RFF collection is being carried out in uncontrolled deployment environments, RFFI systems can be targeted with false RFFs sent by rogue devices. The resulting classifiers may classify the rogue devices as legitimate, effectively replacing their true identities. To defend against impersonation attacks, a novel keyless countermeasure is proposed, which exploits the intrinsic output of the softmax function after classifier training without sacrificing the lightweight nature of RFFI. Experimental results demonstrate an average increase of 0.3 in the area under the receiver operating characteristic curve (AUC), with a 40.0 % improvement in attack detection rate in indoor and outdoor environments.
Abstract:Quantum Machine Learning (QML) is an emerging field of research with potential applications to distributed collaborative learning, such as Split Learning (SL). SL allows resource-constrained clients to collaboratively train ML models with a server, reduce their computational overhead, and enable data privacy by avoiding raw data sharing. Although QML with SL has been studied, the problem remains open in resource-constrained environments where clients lack quantum computing capabilities. Additionally, data privacy leakage between client and server in SL poses risks of reconstruction attacks on the server side. To address these issues, we propose Hybrid Quantum Split Learning (HQSL), an application of Hybrid QML in SL. HQSL enables classical clients to train models with a hybrid quantum server and curtails reconstruction attacks. In addition, we introduce a novel qubit-efficient data-loading technique for designing a quantum layer in HQSL, minimizing both the number of qubits and circuit depth. Experiments on five datasets demonstrate HQSL's feasibility and ability to enhance classification performance compared to its classical models. Notably, HQSL achieves mean improvements of over 3% in both accuracy and F1-score for the Fashion-MNIST dataset, and over 1.5% in both metrics for the Speech Commands dataset. We expand these studies to include up to 100 clients, confirming HQSL's scalability. Moreover, we introduce a noise-based defense mechanism to tackle reconstruction attacks on the server side. Overall, HQSL enables classical clients to collaboratively train their models with a hybrid quantum server, leveraging quantum advantages while improving model performance and security against data privacy leakage-related reconstruction attacks.
Abstract:Network slicing in 5G and the future 6G networks will enable the creation of multiple virtualized networks on a shared physical infrastructure. This innovative approach enables the provision of tailored networks to accommodate specific business types or industry users, thus delivering more customized and efficient services. However, the shared memory and cache in network slicing introduce security vulnerabilities that have yet to be fully addressed. In this paper, we introduce a reinforcement learning-based side-channel cache attack framework specifically designed for network slicing environments. Unlike traditional cache attack methods, our framework leverages reinforcement learning to dynamically identify and exploit cache locations storing sensitive information, such as authentication keys and user registration data. We assume that one slice network is compromised and demonstrate how the attacker can induce another shared slice to send registration requests, thereby estimating the cache locations of critical data. By formulating the cache timing channel attack as a reinforcement learning-driven guessing game between the attack slice and the victim slice, our model efficiently explores possible actions to pinpoint memory blocks containing sensitive information. Experimental results showcase the superiority of our approach, achieving a success rate of approximately 95\% to 98\% in accurately identifying the storage locations of sensitive data. This high level of accuracy underscores the potential risks in shared network slicing environments and highlights the need for robust security measures to safeguard against such advanced side-channel attacks.
Abstract:Large machine-learning training datasets can be distilled into small collections of informative synthetic data samples. These synthetic sets support efficient model learning and reduce the communication cost of data sharing. Thus, high-fidelity distilled data can support the efficient deployment of machine learning applications in distributed network environments. A naive way to construct a synthetic set in a distributed environment is to allow each client to perform local data distillation and to merge local distillations at a central server. However, the quality of the resulting set is impaired by heterogeneity in the distributions of the local data held by clients. To overcome this challenge, we introduce the first collaborative data distillation technique, called CollabDM, which captures the global distribution of the data and requires only a single round of communication between client and server. Our method outperforms the state-of-the-art one-shot learning method on skewed data in distributed learning environments. We also show the promising practical benefits of our method when applied to attack detection in 5G networks.
Abstract:Recently, deep learning has demonstrated promising results in enhancing the accuracy of vulnerability detection and identifying vulnerabilities in software. However, these techniques are still vulnerable to attacks. Adversarial examples can exploit vulnerabilities within deep neural networks, posing a significant threat to system security. This study showcases the susceptibility of deep learning models to adversarial attacks, which can achieve 100% attack success rate (refer to Table 5). The proposed method, EaTVul, encompasses six stages: identification of important samples using support vector machines, identification of important features using the attention mechanism, generation of adversarial data based on these features using ChatGPT, preparation of an adversarial attack pool, selection of seed data using a fuzzy genetic algorithm, and the execution of an evasion attack. Extensive experiments demonstrate the effectiveness of EaTVul, achieving an attack success rate of more than 83% when the snippet size is greater than 2. Furthermore, in most cases with a snippet size of 4, EaTVul achieves a 100% attack success rate. The findings of this research emphasize the necessity of robust defenses against adversarial attacks in software vulnerability detection.
Abstract:This paper addresses a significant gap in Autonomous Cyber Operations (ACO) literature: the absence of effective edge-blocking ACO strategies in dynamic, real-world networks. It specifically targets the cybersecurity vulnerabilities of organizational Active Directory (AD) systems. Unlike the existing literature on edge-blocking defenses which considers AD systems as static entities, our study counters this by recognizing their dynamic nature and developing advanced edge-blocking defenses through a Stackelberg game model between attacker and defender. We devise a Reinforcement Learning (RL)-based attack strategy and an RL-assisted Evolutionary Diversity Optimization-based defense strategy, where the attacker and defender improve each other strategy via parallel gameplay. To address the computational challenges of training attacker-defender strategies on numerous dynamic AD graphs, we propose an RL Training Facilitator that prunes environments and neural networks to eliminate irrelevant elements, enabling efficient and scalable training for large graphs. We extensively train the attacker strategy, as a sophisticated attacker model is essential for a robust defense. Our empirical results successfully demonstrate that our proposed approach enhances defender's proficiency in hardening dynamic AD graphs while ensuring scalability for large-scale AD.
Abstract:Spatiotemporal data is prevalent in a wide range of edge devices, such as those used in personal communication and financial transactions. Recent advancements have sparked a growing interest in integrating spatiotemporal analysis with large-scale language models. However, spatiotemporal data often contains sensitive information, making it unsuitable for open third-party access. To address this challenge, we propose a Graph-GAN-based model for generating privacy-protected spatiotemporal data. Our approach incorporates spatial and temporal attention blocks in the discriminator and a spatiotemporal deconvolution structure in the generator. These enhancements enable efficient training under Gaussian noise to achieve differential privacy. Extensive experiments conducted on three real-world spatiotemporal datasets validate the efficacy of our model. Our method provides a privacy guarantee while maintaining the data utility. The prediction model trained on our generated data maintains a competitive performance compared to the model trained on the original data.