Abstract:With the rapid development of stereoscopic display technologies, especially glasses-free 3D screens, and virtual reality devices, stereoscopic conversion has become an important task to address the lack of high-quality stereoscopic image and video resources. Current stereoscopic conversion algorithms typically struggle to balance reconstruction performance and inference efficiency. This paper proposes a planar video real-time stereoscopic conversion network based on multi-plane images (MPI), which consists of a detail branch for generating MPI and a depth-semantic branch for perceiving depth information. Unlike models that depend on explicit depth map inputs, the proposed method employs a lightweight depth-semantic branch to extract depth-aware features implicitly. To optimize the lightweight branch, a heavy training but light inference strategy is adopted, which involves designing a coarse-to-fine auxiliary branch that is only used during the training stage. In addition, the proposed method simplifies the MPI rendering process for stereoscopic conversion scenarios to further accelerate the inference. Experimental results demonstrate that the proposed method can achieve comparable performance to some state-of-the-art (SOTA) models and support real-time inference at 2K resolution. Compared to the SOTA TMPI algorithm, the proposed method obtains similar subjective quality while achieving over $40\times$ inference acceleration.
Abstract:Incomplete multi-view clustering primarily focuses on dividing unlabeled data into corresponding categories with missing instances, and has received intensive attention due to its superiority in real applications. Considering the influence of incomplete data, the existing methods mostly attempt to recover data by adding extra terms. However, for the unsupervised methods, a simple recovery strategy will cause errors and outlying value accumulations, which will affect the performance of the methods. Broadly, the previous methods have not taken the effectiveness of recovered instances into consideration, or cannot flexibly balance the discrepancies between recovered data and original data. To address these problems, we propose a novel method termed Manifold-based Incomplete Multi-view clustering via Bi-consistency guidance (MIMB), which flexibly recovers incomplete data among various views, and attempts to achieve biconsistency guidance via reverse regularization. In particular, MIMB adds reconstruction terms to representation learning by recovering missing instances, which dynamically examines the latent consensus representation. Moreover, to preserve the consistency information among multiple views, MIMB implements a biconsistency guidance strategy with reverse regularization of the consensus representation and proposes a manifold embedding measure for exploring the hidden structure of the recovered data. Notably, MIMB aims to balance the importance of different views, and introduces an adaptive weight term for each view. Finally, an optimization algorithm with an alternating iteration optimization strategy is designed for final clustering. Extensive experimental results on 6 benchmark datasets are provided to confirm that MIMB can significantly obtain superior results as compared with several state-of-the-art baselines.
Abstract:Automatic image colorization is inherently an ill-posed problem with uncertainty, which requires an accurate semantic understanding of scenes to estimate reasonable colors for grayscale images. Although recent interaction-based methods have achieved impressive performance, it is still a very difficult task to infer realistic and accurate colors for automatic colorization. To reduce the difficulty of semantic understanding of grayscale scenes, this paper tries to utilize corresponding audio, which naturally contains extra semantic information about the same scene. Specifically, a novel audio-infused automatic image colorization (AIAIC) network is proposed, which consists of three stages. First, we take color image semantics as a bridge and pretrain a colorization network guided by color image semantics. Second, the natural co-occurrence of audio and video is utilized to learn the color semantic correlations between audio and visual scenes. Third, the implicit audio semantic representation is fed into the pretrained network to finally realize the audio-guided colorization. The whole process is trained in a self-supervised manner without human annotation. In addition, an audiovisual colorization dataset is established for training and testing. Experiments demonstrate that audio guidance can effectively improve the performance of automatic colorization, especially for some scenes that are difficult to understand only from visual modality.
Abstract:Palmprint recently shows great potential in recognition applications as it is a privacy-friendly and stable biometric. However, the lack of large-scale public palmprint datasets limits further research and development of palmprint recognition. In this paper, we propose a novel realistic pseudo-palmprint generation (RPG) model to synthesize palmprints with massive identities. We first introduce a conditional modulation generator to improve the intra-class diversity. Then an identity-aware loss is proposed to ensure identity consistency against unpaired training. We further improve the B\'ezier palm creases generation strategy to guarantee identity independence. Extensive experimental results demonstrate that synthetic pretraining significantly boosts the recognition model performance. For example, our model improves the state-of-the-art B\'ezierPalm by more than $5\%$ and $14\%$ in terms of TAR@FAR=1e-6 under the $1:1$ and $1:3$ Open-set protocol. When accessing only $10\%$ of the real training data, our method still outperforms ArcFace with $100\%$ real training data, indicating that we are closer to real-data-free palmprint recognition.
Abstract:In the multimedia era, image is an effective medium in search advertising. Dynamic Image Advertising (DIA), a system that matches queries with ad images and generates multimodal ads, is introduced to improve user experience and ad revenue. The core of DIA is a query-image matching module performing ad image retrieval and relevance modeling. Current query-image matching suffers from limited and inconsistent data, and insufficient cross-modal interaction. Also, the separate optimization of retrieval and relevance models affects overall performance. To address this issue, we propose a vision-language framework consisting of two parts. First, we train a base model on large-scale image-text pairs to learn general multimodal representation. Then, we fine-tune the base model on advertising business data, unifying relevance modeling and retrieval through multi-objective learning. Our framework has been implemented in Baidu search advertising system "Phoneix Nest". Online evaluation shows that it improves cost per mille (CPM) and click-through rate (CTR) by 1.04% and 1.865%.
Abstract:Named entity recognition in real-world applications suffers from the diversity of entity types, the emergence of new entity types, and the lack of high-quality annotations. To address the above problems, this paper proposes an in-context learning-based NER approach, which can effectively inject in-context NER ability into PLMs and recognize entities of novel types on-the-fly using only a few demonstrative instances. Specifically, we model PLMs as a meta-function $\mathcal{ \lambda_ {\text{instruction, demonstrations, text}}. M}$, and a new entity extractor can be implicitly constructed by applying new instruction and demonstrations to PLMs, i.e., $\mathcal{ (\lambda . M) }$(instruction, demonstrations) $\to$ $\mathcal{F}$ where $\mathcal{F}$ will be a new entity extractor, i.e., $\mathcal{F}$: text $\to$ entities. To inject the above in-context NER ability into PLMs, we propose a meta-function pre-training algorithm, which pre-trains PLMs by comparing the (instruction, demonstration)-initialized extractor with a surrogate golden extractor. Experimental results on 4 few-shot NER datasets show that our method can effectively inject in-context NER ability into PLMs and significantly outperforms the PLMs+fine-tuning counterparts.
Abstract:The challenge of information extraction (IE) lies in the diversity of label schemas and the heterogeneity of structures. Traditional methods require task-specific model design and rely heavily on expensive supervision, making them difficult to generalize to new schemas. In this paper, we decouple IE into two basic abilities, structuring and conceptualizing, which are shared by different tasks and schemas. Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching (USM) framework, which introduces three unified token linking operations to model the abilities of structuring and conceptualizing. In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand. Empirical evaluation on 4 IE tasks shows that the proposed method achieves state-of-the-art performance under the supervised experiments and shows strong generalization ability in zero/few-shot transfer settings.
Abstract:Palmprints are private and stable information for biometric recognition. In the deep learning era, the development of palmprint recognition is limited by the lack of sufficient training data. In this paper, by observing that palmar creases are the key information to deep-learning-based palmprint recognition, we propose to synthesize training data by manipulating palmar creases. Concretely, we introduce an intuitive geometric model which represents palmar creases with parameterized B\'ezier curves. By randomly sampling B\'ezier parameters, we can synthesize massive training samples of diverse identities, which enables us to pretrain large-scale palmprint recognition models. Experimental results demonstrate that such synthetically pretrained models have a very strong generalization ability: they can be efficiently transferred to real datasets, leading to significant performance improvements on palmprint recognition. For example, under the open-set protocol, our method improves the strong ArcFace baseline by more than 10\% in terms of TAR@1e-6. And under the closed-set protocol, our method reduces the equal error rate (EER) by an order of magnitude.
Abstract:It is well known that the passive stereo system cannot adapt well to weak texture objects, e.g., white walls. However, these weak texture targets are very common in indoor environments. In this paper, we present a novel stereo system, which consists of two cameras (an RGB camera and an IR camera) and an IR speckle projector. The RGB camera is used both for depth estimation and texture acquisition. The IR camera and the speckle projector can form a monocular structured-light (MSL) subsystem, while the two cameras can form a binocular stereo subsystem. The depth map generated by the MSL subsystem can provide external guidance for the stereo matching networks, which can improve the matching accuracy significantly. In order to verify the effectiveness of the proposed system, we build a prototype and collect a test dataset in indoor scenes. The evaluation results show that the Bad 2.0 error of the proposed system is 28.2% of the passive stereo system when the network RAFT is used. The dataset and trained models are available at https://github.com/YuhuaXu/MonoStereoFusion.
Abstract:Adversarial Examples (AEs) can deceive Deep Neural Networks (DNNs) and have received a lot of attention recently. However, majority of the research on AEs is in the digital domain and the adversarial patches are static, which is very different from many real-world DNN applications such as Traffic Sign Recognition (TSR) systems in autonomous vehicles. In TSR systems, object detectors use DNNs to process streaming video in real time. From the view of object detectors, the traffic sign`s position and quality of the video are continuously changing, rendering the digital AEs ineffective in the physical world. In this paper, we propose a systematic pipeline to generate robust physical AEs against real-world object detectors. Robustness is achieved in three ways. First, we simulate the in-vehicle cameras by extending the distribution of image transformations with the blur transformation and the resolution transformation. Second, we design the single and multiple bounding boxes filters to improve the efficiency of the perturbation training. Third, we consider four representative attack vectors, namely Hiding Attack, Appearance Attack, Non-Target Attack and Target Attack. We perform a comprehensive set of experiments under a variety of environmental conditions, and considering illuminations in sunny and cloudy weather as well as at night. The experimental results show that the physical AEs generated from our pipeline are effective and robust when attacking the YOLO v5 based TSR system. The attacks have good transferability and can deceive other state-of-the-art object detectors. We launched HA and NTA on a brand-new 2021 model vehicle. Both attacks are successful in fooling the TSR system, which could be a life-threatening case for autonomous vehicles. Finally, we discuss three defense mechanisms based on image preprocessing, AEs detection, and model enhancing.