Abstract:Like spoken languages, a single sign language expression could correspond to multiple valid textual interpretations. Hence, learning a rigid one-to-one mapping for sign language translation (SLT) models might be inadequate, particularly in the case of limited data. In this work, we introduce a Diverse Sign Language Translation (DivSLT) task, aiming to generate diverse yet accurate translations for sign language videos. Firstly, we employ large language models (LLM) to generate multiple references for the widely-used CSL-Daily and PHOENIX14T SLT datasets. Here, native speakers are only invited to touch up inaccurate references, thus significantly improving the annotation efficiency. Secondly, we provide a benchmark model to spur research in this task. Specifically, we investigate multi-reference training strategies to enable our DivSLT model to achieve diverse translations. Then, to enhance translation accuracy, we employ the max-reward-driven reinforcement learning objective that maximizes the reward of the translated result. Additionally, we utilize multiple metrics to assess the accuracy, diversity, and semantic precision of the DivSLT task. Experimental results on the enriched datasets demonstrate that our DivSLT method achieves not only better translation performance but also diverse translation results.
Abstract:While computer vision has proven valuable for medical image segmentation, its application faces challenges such as limited dataset sizes and the complexity of effectively leveraging unlabeled images. To address these challenges, we present a novel semi-supervised, consistency-based approach termed the data-efficient medical segmenter (DEMS). The DEMS features an encoder-decoder architecture and incorporates the developed online automatic augmenter (OAA) and residual robustness enhancement (RRE) blocks. The OAA augments input data with various image transformations, thereby diversifying the dataset to improve the generalization ability. The RRE enriches feature diversity and introduces perturbations to create varied inputs for different decoders, thereby providing enhanced variability. Moreover, we introduce a sensitive loss to further enhance consistency across different decoders and stabilize the training process. Extensive experimental results on both our own and three public datasets affirm the effectiveness of DEMS. Under extreme data shortage scenarios, our DEMS achieves 16.85\% and 10.37\% improvement in dice score compared with the U-Net and top-performed state-of-the-art method, respectively. Given its superior data efficiency, DEMS could present significant advancements in medical segmentation under small data regimes. The project homepage can be accessed at https://github.com/NUS-Tim/DEMS.
Abstract:Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.
Abstract:The rapid advancement of large language models has revolutionized various applications but also raised crucial concerns about their potential to perpetuate biases and unfairness when deployed in social media contexts. Evaluating LLMs' potential biases and fairness has become crucial, as existing methods rely on limited prompts focusing on just a few groups, lacking a comprehensive categorical perspective. In this paper, we propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFair, encapsulating target-attribute combinations across multiple dimensions. In addition, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLM from a group fairness perspective, we pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias in LLMs to achieve fairness.
Abstract:Palmprint recently shows great potential in recognition applications as it is a privacy-friendly and stable biometric. However, the lack of large-scale public palmprint datasets limits further research and development of palmprint recognition. In this paper, we propose a novel realistic pseudo-palmprint generation (RPG) model to synthesize palmprints with massive identities. We first introduce a conditional modulation generator to improve the intra-class diversity. Then an identity-aware loss is proposed to ensure identity consistency against unpaired training. We further improve the B\'ezier palm creases generation strategy to guarantee identity independence. Extensive experimental results demonstrate that synthetic pretraining significantly boosts the recognition model performance. For example, our model improves the state-of-the-art B\'ezierPalm by more than $5\%$ and $14\%$ in terms of TAR@FAR=1e-6 under the $1:1$ and $1:3$ Open-set protocol. When accessing only $10\%$ of the real training data, our method still outperforms ArcFace with $100\%$ real training data, indicating that we are closer to real-data-free palmprint recognition.
Abstract:Data Augmentation (DA) technique has been widely implemented in the computer vision field to relieve the data shortage, while the DA in Medical Image Analysis (MIA) is still mostly experience-driven. Here, we develop a plug-and-use DA method, named MedAugment, to introduce the automatic DA argumentation to the MIA field. To settle the difference between natural images and medical images, we divide the augmentation space into pixel augmentation space and spatial augmentation space. A novel operation sampling strategy is also proposed when sampling DA operations from the spaces. To demonstrate the performance and universality of MedAugment, we implement extensive experiments on four classification datasets and three segmentation datasets. The results show that our MedAugment outperforms most state-of-the-art DA methods. This work shows that the plug-and-use MedAugment may benefit the MIA community. Code is available at https://github.com/NUS-Tim/MedAugment_Pytorch.
Abstract:Empathy is a crucial factor in open-domain conversations, which naturally shows one's caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.
Abstract:Cross-lingual transfer is important for developing high-quality chatbots in multiple languages due to the strongly imbalanced distribution of language resources. A typical approach is to leverage off-the-shelf machine translation (MT) systems to utilize either the training corpus or developed models from high-resource languages. In this work, we investigate whether it is helpful to utilize MT at all in this task. To do so, we simulate a low-resource scenario assuming access to limited Chinese dialog data in the movie domain and large amounts of English dialog data from multiple domains. Experiments show that leveraging English dialog corpora can indeed improve the naturalness, relevance and cross-domain transferability in Chinese. However, directly using English dialog corpora in its original form, surprisingly, is better than using its translated version. As the topics and wording habits in daily conversations are strongly culture-dependent, MT can reinforce the bias from high-resource languages, yielding unnatural generations in the target language. Considering the cost of translating large amounts of text and the strong effects of the translation quality, we suggest future research should rather focus on utilizing the original English data for cross-lingual transfer in dialog generation. We perform extensive human evaluations and ablation studies. The analysis results, together with the collected dataset, are presented to draw attention towards this area and benefit future research.
Abstract:Large pre-trained code generation models, such as OpenAI Codex, can generate syntax- and function-correct code, making the coding of programmers more productive and our pursuit of artificial general intelligence closer. In this paper, we introduce CodeGeeX, a multilingual model with 13 billion parameters for code generation. CodeGeeX is pre-trained on 850 billion tokens of 23 programming languages as of June 2022. Our extensive experiments suggest that CodeGeeX outperforms multilingual code models of similar scale for both the tasks of code generation and translation on HumanEval-X. Building upon HumanEval (Python only), we develop the HumanEval-X benchmark for evaluating multilingual models by hand-writing the solutions in C++, Java, JavaScript, and Go. In addition, we build CodeGeeX-based extensions on Visual Studio Code, JetBrains, and Cloud Studio, generating 4.7 billion tokens for tens of thousands of active users per week. Our user study demonstrates that CodeGeeX can help to increase coding efficiency for 83.4% of its users. Finally, CodeGeeX is publicly accessible and in Sep. 2022, we open-sourced its code, model weights (the version of 850B tokens), API, extensions, and HumanEval-X at https://github.com/THUDM/CodeGeeX.
Abstract:In the field of human pose estimation, regression-based methods have been dominated in terms of speed, while heatmap-based methods are far ahead in terms of performance. How to take advantage of both schemes remains a challenging problem. In this paper, we propose a novel human pose estimation framework termed DistilPose, which bridges the gaps between heatmap-based and regression-based methods. Specifically, DistilPose maximizes the transfer of knowledge from the teacher model (heatmap-based) to the student model (regression-based) through Token-distilling Encoder (TDE) and Simulated Heatmaps. TDE aligns the feature spaces of heatmap-based and regression-based models by introducing tokenization, while Simulated Heatmaps transfer explicit guidance (distribution and confidence) from teacher heatmaps into student models. Extensive experiments show that the proposed DistilPose can significantly improve the performance of the regression-based models while maintaining efficiency. Specifically, on the MSCOCO validation dataset, DistilPose-S obtains 71.6% mAP with 5.36M parameter, 2.38 GFLOPs and 40.2 FPS, which saves 12.95x, 7.16x computational cost and is 4.9x faster than its teacher model with only 0.9 points performance drop. Furthermore, DistilPose-L obtains 74.4% mAP on MSCOCO validation dataset, achieving a new state-of-the-art among predominant regression-based models.