TLP
Abstract:In our globalized world, a growing number of situations arise where people are required to communicate in one or several foreign languages. In the case of written communication, users with a good command of a foreign language may find assistance from computer-aided translation (CAT) technologies. These technologies often allow users to access external resources, such as dictionaries, terminologies or bilingual concordancers, thereby interrupting and considerably hindering the writing process. In addition, CAT systems assume that the source sentence is fixed and also restrict the possible changes on the target side. In order to make the writing process smoother, we present BiSync, a bilingual writing assistant that allows users to freely compose text in two languages, while maintaining the two monolingual texts synchronized. We also include additional functionalities, such as the display of alternative prefix translations and paraphrases, which are intended to facilitate the authoring of texts. We detail the model architecture used for synchronization and evaluate the resulting tool, showing that high accuracy can be attained with limited computational resources. The interface and models are publicly available at https://github.com/jmcrego/BiSync and a demonstration video can be watched on YouTube at https://youtu.be/_l-ugDHfNgU .
Abstract:Machine Translation (MT) has made significant progress in recent years using deep learning, especially after the emergence of large language models (LLMs) such as GPT-3 and ChatGPT. This brings new challenges and opportunities for MT using LLMs. In this paper, we brainstorm some interesting directions for MT using LLMs, including stylized MT, interactive MT, and Translation Memory-based MT, as well as a new evaluation paradigm using LLMs. We also discuss the privacy concerns in MT using LLMs and a basic privacy-preserving method to mitigate such risks. To illustrate the potential of our proposed directions, we present several examples for the new directions mentioned above, demonstrating the feasibility of the proposed directions and highlight the opportunities and challenges for future research in MT using LLMs.
Abstract:Machine Translation (MT) is usually viewed as a one-shot process that generates the target language equivalent of some source text from scratch. We consider here a more general setting which assumes an initial target sequence, that must be transformed into a valid translation of the source, thereby restoring parallelism between source and target. For this bilingual synchronization task, we consider several architectures (both autoregressive and non-autoregressive) and training regimes, and experiment with multiple practical settings such as simulated interactive MT, translating with Translation Memory (TM) and TM cleaning. Our results suggest that one single generic edit-based system, once fine-tuned, can compare with, or even outperform, dedicated systems specifically trained for these tasks.
Abstract:Non-autoregressive machine translation (NAT) has recently made great progress. However, most works to date have focused on standard translation tasks, even though some edit-based NAT models, such as the Levenshtein Transformer (LevT), seem well suited to translate with a Translation Memory (TM). This is the scenario considered here. We first analyze the vanilla LevT model and explain why it does not do well in this setting. We then propose a new variant, TM-LevT, and show how to effectively train this model. By modifying the data presentation and introducing an extra deletion operation, we obtain performance that are on par with an autoregressive approach, while reducing the decoding load. We also show that incorporating TMs during training dispenses to use knowledge distillation, a well-known trick used to mitigate the multimodality issue.
Abstract:The 0-1 multidimensional knapsack problem(MKP) is a classical NP-hard combinatorial optimization problem. In this paper, we propose a novel heuristic algorithm simulating evolutionary computation and large neighbourhood search for the MKP. It maintains a set of solutions and abstracts information from the solution set to generate good partial assignments. To find high-quality solutions, integer programming is employed to explore the promising search space specified by the good partial assignments. Extensive experimentation with commonly used benchmark sets shows that our approach outperforms the state of the art heuristic algorithms, TPTEA and DQPSO, in solution quality. It finds new lower bound for 8 large and hard instances
Abstract:As the amount of audio-visual content increases, the need to develop automatic captioning and subtitling solutions to match the expectations of a growing international audience appears as the only viable way to boost throughput and lower the related post-production costs. Automatic captioning and subtitling often need to be tightly intertwined to achieve an appropriate level of consistency and synchronization with each other and with the video signal. In this work, we assess a dual decoding scheme to achieve a strong coupling between these two tasks and show how adequacy and consistency are increased, with virtually no additional cost in terms of model size and training complexity.
Abstract:Machine translation is generally understood as generating one target text from an input source document. In this paper, we consider a stronger requirement: to jointly generate two texts so that each output side effectively depends on the other. As we discuss, such a device serves several practical purposes, from multi-target machine translation to the generation of controlled variations of the target text. We present an analysis of possible implementations of dual decoding, and experiment with four applications. Viewing the problem from multiple angles allows us to better highlight the challenges of dual decoding and to also thoroughly analyze the benefits of generating matched, rather than independent, translations.
Abstract:Code-Switching (CSW) is a common phenomenon that occurs in multilingual geographic or social contexts, which raises challenging problems for natural language processing tools. We focus here on Machine Translation (MT) of CSW texts, where we aim to simultaneously disentangle and translate the two mixed languages. Due to the lack of actual translated CSW data, we generate artificial training data from regular parallel texts. Experiments show this training strategy yields MT systems that surpass multilingual systems for code-switched texts. These results are confirmed in an alternative task aimed at providing contextual translations for a L2 writing assistant.