Department of R and D, UnionString Technology Co. Ltd
Abstract:Recent advancements in scaling up models have significantly improved performance in Automatic Speech Recognition (ASR) tasks. However, training large ASR models from scratch remains costly. To address this issue, we introduce UME, a novel method that efficiently Upcycles pretrained dense ASR checkpoints into larger Mixture-of-Experts (MoE) architectures. Initially, feed-forward networks are converted into MoE layers. By reusing the pretrained weights, we establish a robust foundation for the expanded model, significantly reducing optimization time. Then, layer freezing and expert balancing strategies are employed to continue training the model, further enhancing performance. Experiments on a mixture of 170k-hour Mandarin and English datasets show that UME: 1) surpasses the pretrained baseline by a margin of 11.9% relative error rate reduction while maintaining comparable latency; 2) reduces training time by up to 86.7% and achieves superior accuracy compared to training models of the same size from scratch.
Abstract:The believable simulation of multi-user behavior is crucial for understanding complex social systems. Recently, large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence across various tasks. However, real human societies are often dynamic and complex, involving numerous individuals engaging in multimodal interactions. In this paper, taking e-commerce scenarios as an example, we present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs. In LMAgent, besides freely chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce. To simulate this complex system, we introduce a self-consistency prompting mechanism to augment agents' multimodal capabilities, resulting in significantly improved decision-making performance over the existing multi-agent system. Moreover, we propose a fast memory mechanism combined with the small-world model to enhance system efficiency, which supports more than 10,000 agent simulations in a society. Experiments on agents' behavior show that these agents achieve comparable performance to humans in behavioral indicators. Furthermore, compared with the existing LLMs-based multi-agent system, more different and valuable phenomena are exhibited, such as herd behavior, which demonstrates the potential of LMAgent in credible large-scale social behavior simulations.
Abstract:Offline reinforcement learning (RL) aims to learn optimal policies from previously collected datasets. Recently, due to their powerful representational capabilities, diffusion models have shown significant potential as policy models for offline RL issues. However, previous offline RL algorithms based on diffusion policies generally adopt weighted regression to improve the policy. This approach optimizes the policy only using the collected actions and is sensitive to Q-values, which limits the potential for further performance enhancement. To this end, we propose a novel preferred-action-optimized diffusion policy for offline RL. In particular, an expressive conditional diffusion model is utilized to represent the diverse distribution of a behavior policy. Meanwhile, based on the diffusion model, preferred actions within the same behavior distribution are automatically generated through the critic function. Moreover, an anti-noise preference optimization is designed to achieve policy improvement by using the preferred actions, which can adapt to noise-preferred actions for stable training. Extensive experiments demonstrate that the proposed method provides competitive or superior performance compared to previous state-of-the-art offline RL methods, particularly in sparse reward tasks such as Kitchen and AntMaze. Additionally, we empirically prove the effectiveness of anti-noise preference optimization.
Abstract:As Embodied AI advances, it increasingly enables robots to handle the complexity of household manipulation tasks more effectively. However, the application of robots in these settings remains limited due to the scarcity of bimanual-mobile robot manipulation datasets. Existing datasets either focus solely on simple grasping tasks using single-arm robots without mobility, or collect sensor data limited to a narrow scope of sensory inputs. As a result, these datasets often fail to encapsulate the intricate and dynamic nature of real-world tasks that bimanual-mobile robots are expected to perform. To address these limitations, we introduce BRMData, a Bimanual-mobile Robot Manipulation Dataset designed specifically for household applications. The dataset includes 10 diverse household tasks, ranging from simple single-arm manipulation to more complex dual-arm and mobile manipulations. It is collected using multi-view and depth-sensing data acquisition strategies. Human-robot interactions and multi-object manipulations are integrated into the task designs to closely simulate real-world household applications. Moreover, we present a Manipulation Efficiency Score (MES) metric to evaluate both the precision and efficiency of robot manipulation methods. BRMData aims to drive the development of versatile robot manipulation technologies, specifically focusing on advancing imitation learning methods from human demonstrations. The dataset is now open-sourced and available at https://embodiedrobot.github.io/, enhancing research and development efforts in the field of Embodied Manipulation.
Abstract:The rapid advancement of large language models has revolutionized various applications but also raised crucial concerns about their potential to perpetuate biases and unfairness when deployed in social media contexts. Evaluating LLMs' potential biases and fairness has become crucial, as existing methods rely on limited prompts focusing on just a few groups, lacking a comprehensive categorical perspective. In this paper, we propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFair, encapsulating target-attribute combinations across multiple dimensions. In addition, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLM from a group fairness perspective, we pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias in LLMs to achieve fairness.
Abstract:While large language models (LLMs) excel in a simulated world of texts, they struggle to interact with the more realistic world without perceptions of other modalities such as visual or audio signals. Although vision-language models (VLMs) integrate LLM modules (1) aligned with static image features, and (2) may possess prior knowledge of world dynamics (as demonstrated in the text world), they have not been trained in an embodied visual world and thus cannot align with its dynamics. On the other hand, training an embodied agent in a noisy visual world without expert guidance is often challenging and inefficient. In this paper, we train a VLM agent living in a visual world using an LLM agent excelling in a parallel text world (but inapplicable to the visual world). Specifically, we distill LLM's reflection outcomes (improved actions by analyzing mistakes) in a text world's tasks to finetune the VLM on the same tasks of the visual world, resulting in an Embodied Multi-Modal Agent (EMMA) quickly adapting to the visual world dynamics. Such cross-modality imitation learning between the two parallel worlds enables EMMA to generalize to a broad scope of new tasks without any further guidance from the LLM expert. Extensive evaluations on the ALFWorld benchmark highlight EMMA's superior performance to SOTA VLM-based agents across diverse tasks, e.g., 20%-70% improvement in the success rate.
Abstract:Multimodal emotion recognition (MER) aims to detect the emotional status of a given expression by combining the speech and text information. Intuitively, label information should be capable of helping the model locate the salient tokens/frames relevant to the specific emotion, which finally facilitates the MER task. Inspired by this, we propose a novel approach for MER by leveraging label information. Specifically, we first obtain the representative label embeddings for both text and speech modalities, then learn the label-enhanced text/speech representations for each utterance via label-token and label-frame interactions. Finally, we devise a novel label-guided attentive fusion module to fuse the label-aware text and speech representations for emotion classification. Extensive experiments were conducted on the public IEMOCAP dataset, and experimental results demonstrate that our proposed approach outperforms existing baselines and achieves new state-of-the-art performance.
Abstract:High-quality data is essential for conversational recommendation systems and serves as the cornerstone of the network architecture development and training strategy design. Existing works contribute heavy human efforts to manually labeling or designing and extending recommender dialogue templates. However, they suffer from (i) the limited number of human annotators results in that datasets can hardly capture rich and large-scale cases in the real world, (ii) the limited experience and knowledge of annotators account for the uninformative corpus and inappropriate recommendations. In this paper, we propose a novel automatic dataset synthesis approach that can generate both large-scale and high-quality recommendation dialogues through a data2text generation process, where unstructured recommendation conversations are generated from structured graphs based on user-item information from the real world. In doing so, we comprehensively exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets. Extensive experiments validate the benefit brought by the automatically synthesized data under low-resource scenarios and demonstrate the promising potential to facilitate the development of a more effective conversational recommendation system.
Abstract:Self-Supervised Learning (SSL) Automatic Speech Recognition (ASR) models have shown great promise over Supervised Learning (SL) ones in low-resource settings. However, the advantages of SSL are gradually weakened when the amount of labeled data increases in many industrial applications. To further improve the ASR performance when abundant labels are available, we first explore the potential of combining SL and SSL ASR models via analyzing their complementarity in recognition accuracy and optimization property. Then, we propose a novel Optimal Transport based Fusion (OTF) method for SL and SSL models without incurring extra computation cost in inference. Specifically, optimal transport is adopted to softly align the layer-wise weights to unify the two different networks into a single one. Experimental results on the public 1k-hour English LibriSpeech dataset and our in-house 2.6k-hour Chinese dataset show that OTF largely outperforms the individual models with lower error rates.
Abstract:Empathy is a crucial factor in open-domain conversations, which naturally shows one's caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.