Abstract:Respiratory rate (RR) is a critical health indicator often monitored under inconvenient scenarios, limiting its practicality for continuous monitoring. Photoplethysmography (PPG) sensors, increasingly integrated into wearable devices, offer a chance to continuously estimate RR in a portable manner. In this paper, we propose RespDiff, an end-to-end multi-scale RNN diffusion model for respiratory waveform estimation from PPG signals. RespDiff does not require hand-crafted features or the exclusion of low-quality signal segments, making it suitable for real-world scenarios. The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform. Additionally, a spectral loss term is introduced to optimize the model further. Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation while others range from 1.66 to 2.15 bpm, showing its potential for robust and accurate respiratory monitoring in real-world applications.
Abstract:This paper is the first to propose an end-to-end framework of mutually reinforcing images to 3D surface recurrent neural network-like for model-adaptation indoor 3D reconstruction,where multi-view dense matching and point cloud surface optimization are mutually reinforced by a RNN-like structure rather than being treated as a separate issue.The characteristics are as follows:In the multi-view dense matching module, the model-adaptation strategy is used to fine-tune and optimize a Transformer-based multi-view dense matching DNN,so that it has the higher image feature for matching and detail expression capabilities;In the point cloud surface optimization module,the 3D surface reconstruction network based on 3D implicit field is optimized by using model-adaptation strategy,which solves the problem of point cloud surface optimization without knowing normal vector of 3D surface.To improve and finely reconstruct 3D surfaces from point cloud,smooth loss is proposed and added to this module;The MRIo3DS-Net is a RNN-like framework,which utilizes the finely optimized 3D surface obtained by PCSOM to recursively reinforce the differentiable warping for optimizing MVDMM.This refinement leads to achieving better dense matching results, and better dense matching results leads to achieving better 3D surface results recursively and mutually.Hence, model-adaptation strategy can better collaborate the differences between the two network modules,so that they complement each other to achieve the better effect;To accelerate the transfer learning and training convergence from source domain to target domain,a multi-task loss function based on Bayesian uncertainty is used to adaptively adjust the weights between the two networks loss functions of MVDMM and PCSOM;In this multi-task cascade network framework,any modules can be replaced by any state-of-the-art networks to achieve better 3D reconstruction results.
Abstract:Currently the semantic segmentation task of multispectral remotely sensed imagery (MSRSI) faces the following problems: 1) Usually, only single domain feature (i.e., space domain or frequency domain) is considered; 2) downsampling operation in encoder generally leads to the accuracy loss of edge extraction; 3) multichannel features of MSRSI are not fully considered; and 4) prior knowledge of remote sensing is not fully utilized. To solve the aforementioned issues, an index-space-wave state superposition Transformer (ISWSST) is the first to be proposed for MSRSI semantic segmentation by the inspiration from quantum mechanics, whose superiority is as follows: 1) index, space and wave states are superposed or fused to simulate quantum superposition by adaptively voting decision (i.e., ensemble learning idea) for being a stronger classifier and improving the segmentation accuracy; 2) a lossless wavelet pyramid encoder-decoder module is designed to losslessly reconstruct image and simulate quantum entanglement based on wavelet transform and inverse wavelet transform for avoiding the edge extraction loss; 3) combining multispectral features (i.e. remote sensing index and channel attention mechanism) is proposed to accurately extract ground objects from original resolution images; and 4) quantum mechanics are introduced to interpret the underlying superiority of ISWSST. Experiments show that ISWSST is validated and superior to the state-of-the-art architectures for the MSRSI segmentation task, which improves the segmentation and edge extraction accuracy effectively. Codes will be available publicly after our paper is accepted.
Abstract:Remotely sensed image high-accuracy interpretation (RSIHI), including tasks such as semantic segmentation and change detection, faces the three major problems: (1) complementarity problem of spatially stationary-and-non-stationary frequency; (2) edge uncertainty problem caused by down-sampling in the encoder step and intrinsic edge noises; and (3) false detection problem caused by imagery registration error in change detection. To solve the aforementioned problems, an uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the proposed for RSIHI, the superiority of which is as following: (1) a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP) is proposed to enhance the interaction of spatially stationary and non-stationary frequency features to yield high-fidelity edge extraction result. Inspired by HRFormer, SHCP remains the high-frequency stream through the whole encoder-decoder process with parallel high-to-low frequency streams and reduces the edge loss by a downsampling operation; (2) a mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is proposed to improve the robustness and edge noise resistance. MUDM could further optimize the uncertain region to improve edge extraction result by gradually removing the multiple geo-knowledge-based noises; (3) a semi-pseudo-Siamese UDHF2-Net for change detection task is proposed to reduce the pseudo change by registration error. It adopts semi-pseudo-Siamese architecture to extract above complemental frequency features for adaptively reducing registration differencing, and MUDM to recover the uncertain region by gradually reducing the registration error besides above edge noises. Comprehensive experiments were performed to demonstrate the superiority of UDHF2-Net. Especially ablation experiments indicate the effectiveness of UDHF2-Net.
Abstract:In recent years, diffusion-based text-to-music (TTM) generation has gained prominence, offering a novel approach to synthesizing musical content from textual descriptions. Achieving high accuracy and diversity in this generation process requires extensive, high-quality data, which often constitutes only a fraction of available datasets. Within open-source datasets, the prevalence of issues like mislabeling, weak labeling, unlabeled data, and low-quality music waveform significantly hampers the development of music generation models. To overcome these challenges, we introduce a novel quality-aware masked diffusion transformer (QA-MDT) approach that enables generative models to discern the quality of input music waveform during training. Building on the unique properties of musical signals, we have adapted and implemented a MDT model for TTM task, while further unveiling its distinct capacity for quality control. Moreover, we address the issue of low-quality captions with a caption refinement data processing approach. Our demo page is shown in https://qa-mdt.github.io/. Code on https://github.com/ivcylc/qa-mdt
Abstract:Infrared and visible image fusion (IVF) plays an important role in intelligent transportation system (ITS). The early works predominantly focus on boosting the visual appeal of the fused result, and only several recent approaches have tried to combine the high-level vision task with IVF. However, they prioritize the design of cascaded structure to seek unified suitable features and fit different tasks. Thus, they tend to typically bias toward to reconstructing raw pixels without considering the significance of semantic features. Therefore, we propose a novel prior semantic guided image fusion method based on the dual-modality strategy, improving the performance of IVF in ITS. Specifically, to explore the independent significant semantic of each modality, we first design two parallel semantic segmentation branches with a refined feature adaptive-modulation (RFaM) mechanism. RFaM can perceive the features that are semantically distinct enough in each semantic segmentation branch. Then, two pilot experiments based on the two branches are conducted to capture the significant prior semantic of two images, which then is applied to guide the fusion task in the integration of semantic segmentation branches and fusion branches. In addition, to aggregate both high-level semantics and impressive visual effects, we further investigate the frequency response of the prior semantics, and propose a multi-level representation-adaptive fusion (MRaF) module to explicitly integrate the low-frequent prior semantic with the high-frequent details. Extensive experiments on two public datasets demonstrate the superiority of our method over the state-of-the-art image fusion approaches, in terms of either the visual appeal or the high-level semantics.
Abstract:The superior performances of pre-trained foundation models in various visual tasks underscore their potential to enhance the 2D models' open-vocabulary ability. Existing methods explore analogous applications in the 3D space. However, most of them only center around knowledge extraction from singular foundation models, which limits the open-vocabulary ability of 3D models. We hypothesize that leveraging complementary pre-trained knowledge from various foundation models can improve knowledge transfer from 2D pre-trained visual language models to the 3D space. In this work, we propose FM-OV3D, a method of Foundation Model-based Cross-modal Knowledge Blending for Open-Vocabulary 3D Detection, which improves the open-vocabulary localization and recognition abilities of 3D model by blending knowledge from multiple pre-trained foundation models, achieving true open-vocabulary without facing constraints from original 3D datasets. Specifically, to learn the open-vocabulary 3D localization ability, we adopt the open-vocabulary localization knowledge of the Grounded-Segment-Anything model. For open-vocabulary 3D recognition ability, We leverage the knowledge of generative foundation models, including GPT-3 and Stable Diffusion models, and cross-modal discriminative models like CLIP. The experimental results on two popular benchmarks for open-vocabulary 3D object detection show that our model efficiently learns knowledge from multiple foundation models to enhance the open-vocabulary ability of the 3D model and successfully achieves state-of-the-art performance in open-vocabulary 3D object detection tasks. Code is released at https://github.com/dmzhang0425/FM-OV3D.git.
Abstract:Infrared and visible image fusion aims to extract complementary features to synthesize a single fused image. Many methods employ convolutional neural networks (CNNs) to extract local features due to its translation invariance and locality. However, CNNs fail to consider the image's non-local self-similarity (NLss), though it can expand the receptive field by pooling operations, it still inevitably leads to information loss. In addition, the transformer structure extracts long-range dependence by considering the correlativity among all image patches, leading to information redundancy of such transformer-based methods. However, graph representation is more flexible than grid (CNN) or sequence (transformer structure) representation to address irregular objects, and graph can also construct the relationships among the spatially repeatable details or texture with far-space distance. Therefore, to address the above issues, it is significant to convert images into the graph space and thus adopt graph convolutional networks (GCNs) to extract NLss. This is because the graph can provide a fine structure to aggregate features and propagate information across the nearest vertices without introducing redundant information. Concretely, we implement a cascaded NLss extraction pattern to extract NLss of intra- and inter-modal by exploring interactions of different image pixels in intra- and inter-image positional distance. We commence by preforming GCNs on each intra-modal to aggregate features and propagate information to extract independent intra-modal NLss. Then, GCNs are performed on the concatenate intra-modal NLss features of infrared and visible images, which can explore the cross-domain NLss of inter-modal to reconstruct the fused image. Ablation studies and extensive experiments illustrates the effectiveness and superiority of the proposed method on three datasets.
Abstract:Informationization is a prevailing trend in today's world. The increasing demand for information in decision-making processes poses significant challenges for investigation activities, particularly in terms of effectively allocating limited resources to plan investigation programs. This paper addresses the investigation path planning problem by formulating it as a multi-traveling salesman problem (MTSP). Our objective is to minimize costs, and to achieve this, we propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA). To overcome the limitations of the artificial fish swarm algorithm, such as low optimization accuracy and the inability to consider global and local information, we incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions to enhance optimization accuracy and search performance. Additionally, we integrate the differential evolution algorithm to create a hybrid algorithm that leverages the complementary advantages of both approaches. Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes, as well as showcasing excellent performance on the examples proposed in this study.
Abstract:With the increasing importance of machine learning, the privacy and security of training data have become critical. Federated learning, which stores data in distributed nodes and shares only model parameters, has gained significant attention for addressing this concern. However, a challenge arises in federated learning due to the Byzantine Attack Problem, where malicious local models can compromise the global model's performance during aggregation. This article proposes the Blockchain-based Byzantine-Robust Federated Learning (BRLF) model that combines federated learning with blockchain technology. This integration enables traceability of malicious models and provides incentives for locally trained clients. Our approach involves selecting the aggregation node based on Pearson's correlation coefficient, and we perform spectral clustering and calculate the average gradient within each cluster, validating its accuracy using local dataset of the aggregation nodes. Experimental results on public datasets demonstrate the superior byzantine robustness of our secure aggregation algorithm compared to other baseline byzantine robust aggregation methods, and proved our proposed model effectiveness in addressing the resource consumption problem.