Abstract:Speech super-resolution (SR), which generates a waveform at a higher sampling rate from its low-resolution version, is a long-standing critical task in speech restoration. Previous works have explored speech SR in different data spaces, but these methods either require additional compression networks or exhibit limited synthesis quality and inference speed. Motivated by recent advances in probabilistic generative models, we present Bridge-SR, a novel and efficient any-to-48kHz SR system in the speech waveform domain. Using tractable Schr\"odinger Bridge models, we leverage the observed low-resolution waveform as a prior, which is intrinsically informative for the high-resolution target. By optimizing a lightweight network to learn the score functions from the prior to the target, we achieve efficient waveform SR through a data-to-data generation process that fully exploits the instructive content contained in the low-resolution observation. Furthermore, we identify the importance of the noise schedule, data scaling, and auxiliary loss functions, which further improve the SR quality of bridge-based systems. The experiments conducted on the benchmark dataset VCTK demonstrate the efficiency of our system: (1) in terms of sample quality, Bridge-SR outperforms several strong baseline methods under different SR settings, using a lightweight network backbone (1.7M); (2) in terms of inference speed, our 4-step synthesis achieves better performance than the 8-step conditional diffusion counterpart (LSD: 0.911 vs 0.927). Demo at https://bridge-sr.github.io.
Abstract:Image-to-video (I2V) generation is gaining increasing attention with its wide application in video synthesis. Recently, diffusion-based I2V models have achieved remarkable progress given their novel design on network architecture, cascaded framework, and motion representation. However, restricted by their noise-to-data generation process, diffusion-based methods inevitably suffer the difficulty to generate video samples with both appearance consistency and temporal coherence from an uninformative Gaussian noise, which may limit their synthesis quality. In this work, we present FrameBridge, taking the given static image as the prior of video target and establishing a tractable bridge model between them. By formulating I2V synthesis as a frames-to-frames generation task and modelling it with a data-to-data process, we fully exploit the information in input image and facilitate the generative model to learn the image animation process. In two popular settings of training I2V models, namely fine-tuning a pre-trained text-to-video (T2V) model or training from scratch, we further propose two techniques, SNR-Aligned Fine-tuning (SAF) and neural prior, which improve the fine-tuning efficiency of diffusion-based T2V models to FrameBridge and the synthesis quality of bridge-based I2V models respectively. Experiments conducted on WebVid-2M and UCF-101 demonstrate that: (1) our FrameBridge achieves superior I2V quality in comparison with the diffusion counterpart (zero-shot FVD 83 vs. 176 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101); (2) our proposed SAF and neural prior effectively enhance the ability of bridge-based I2V models in the scenarios of fine-tuning and training from scratch. Demo samples can be visited at: https://framebridge-demo.github.io/.
Abstract:Respiratory rate (RR) is a critical health indicator often monitored under inconvenient scenarios, limiting its practicality for continuous monitoring. Photoplethysmography (PPG) sensors, increasingly integrated into wearable devices, offer a chance to continuously estimate RR in a portable manner. In this paper, we propose RespDiff, an end-to-end multi-scale RNN diffusion model for respiratory waveform estimation from PPG signals. RespDiff does not require hand-crafted features or the exclusion of low-quality signal segments, making it suitable for real-world scenarios. The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform. Additionally, a spectral loss term is introduced to optimize the model further. Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation while others range from 1.66 to 2.15 bpm, showing its potential for robust and accurate respiratory monitoring in real-world applications.
Abstract:In this paper, Whisper, a large-scale pre-trained model for automatic speech recognition, is proposed to apply to speaker verification. A partial multi-scale feature aggregation (PMFA) approach is proposed based on a subset of Whisper encoder blocks to derive highly discriminative speaker embeddings.Experimental results demonstrate that using the middle to later blocks of the Whisper encoder keeps more speaker information. On the VoxCeleb1 and CN-Celeb1 datasets, our system achieves 1.42% and 8.23% equal error rates (EERs) respectively, receiving 0.58% and 1.81% absolute EER reductions over the ECAPA-TDNN baseline, and 0.46% and 0.97% over the ResNet34 baseline. Furthermore, our results indicate that using Whisper models trained on multilingual data can effectively enhance the model's robustness across languages. Finally, the low-rank adaptation approach is evaluated, which reduces the trainable model parameters by approximately 45 times while only slightly increasing EER by 0.2%.
Abstract:In text-to-speech (TTS) synthesis, diffusion models have achieved promising generation quality. However, because of the pre-defined data-to-noise diffusion process, their prior distribution is restricted to a noisy representation, which provides little information of the generation target. In this work, we present a novel TTS system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one, which provides strong structural information of the target. Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram, leading to a data-to-data process. Moreover, the tractability and flexibility of our formulation allow us to empirically study the design spaces such as noise schedules, as well as to develop stochastic and deterministic samplers. Experimental results on the LJ-Speech dataset illustrate the effectiveness of our method in terms of both synthesis quality and sampling efficiency, significantly outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthesis and strong fast TTS models in few-step scenarios. Project page: https://bridge-tts.github.io/
Abstract:Pulsative signals such as the electrocardiogram (ECG) are extensively collected as part of routine clinical care. However, noisy and poor-quality recordings, leading to missing values, are a major issue for signals collected using mobile health systems, decreasing the signal quality and affecting the automated downstream tasks. Recent studies have explored imputation of missing values for ECG with probabilistic time-series models. Nevertheless, in comparison with the deterministic models, their performance is still limited, as the variations across subjects and heart-beat relationships are not explicitly considered in the training objective. In this work, to improve the ECG imputation and forecasting accuracy with probabilistic models, we present an template-guided denoising diffusion probabilistic model, PulseDiff, which is conditioned an informative prior for a range of health conditions. Specifically, 1) we first extract a subject-level pulsative template from the observation as an informative prior of missing values, which captures the personal characteristics; 2) we then add beat-level stochastic shift terms on the template for prior augmentation, which considers the beat-level variance of positioning and amplitude; 3) we finally design a confidence score to consider the health condition of subject, which ensures our prior is provided in a safe way. Experiments with the PTBXL dataset reveal PulseDiff improves the performance of two strong DDPMs baseline models, CSDI and SSSD$^{S4}$, verifying our method guides the generation of DDPMs while managing the uncertainty. When combining with SSSD$^{S4}$, our PulseDiff method outperforms the leading deterministic model for short-interval missing data and is comparable for long-interval data loss.
Abstract:Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.
Abstract:Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
Abstract:Binaural audio plays a significant role in constructing immersive augmented and virtual realities. As it is expensive to record binaural audio from the real world, synthesizing them from mono audio has attracted increasing attention. This synthesis process involves not only the basic physical warping of the mono audio, but also room reverberations and head/ear related filtrations, which, however, are difficult to accurately simulate in traditional digital signal processing. In this paper, we formulate the synthesis process from a different perspective by decomposing the binaural audio into a common part that shared by the left and right channels as well as a specific part that differs in each channel. Accordingly, we propose BinauralGrad, a novel two-stage framework equipped with diffusion models to synthesize them respectively. Specifically, in the first stage, the common information of the binaural audio is generated with a single-channel diffusion model conditioned on the mono audio, based on which the binaural audio is generated by a two-channel diffusion model in the second stage. Combining this novel perspective of two-stage synthesis with advanced generative models (i.e., the diffusion models),the proposed BinauralGrad is able to generate accurate and high-fidelity binaural audio samples. Experiment results show that on a benchmark dataset, BinauralGrad outperforms the existing baselines by a large margin in terms of both object and subject evaluation metrics (Wave L2: 0.128 vs. 0.157, MOS: 3.80 vs. 3.61). The generated audio samples are available online.
Abstract:Denoising diffusion probabilistic models (diffusion models for short) require a large number of iterations in inference to achieve the generation quality that matches or surpasses the state-of-the-art generative models, which invariably results in slow inference speed. Previous approaches aim to optimize the choice of inference schedule over a few iterations to speed up inference. However, this results in reduced generation quality, mainly because the inference process is optimized separately, without jointly optimizing with the training process. In this paper, we propose InferGrad, a diffusion model for vocoder that incorporates inference process into training, to reduce the inference iterations while maintaining high generation quality. More specifically, during training, we generate data from random noise through a reverse process under inference schedules with a few iterations, and impose a loss to minimize the gap between the generated and ground-truth data samples. Then, unlike existing approaches, the training of InferGrad considers the inference process. The advantages of InferGrad are demonstrated through experiments on the LJSpeech dataset showing that InferGrad achieves better voice quality than the baseline WaveGrad under same conditions while maintaining the same voice quality as the baseline but with $3$x speedup ($2$ iterations for InferGrad vs $6$ iterations for WaveGrad).