Abstract:Mainstream Scene Text Recognition (STR) algorithms are developed based on RGB cameras which are sensitive to challenging factors such as low illumination, motion blur, and cluttered backgrounds. In this paper, we propose to recognize the scene text using bio-inspired event cameras by collecting and annotating a large-scale benchmark dataset, termed EventSTR. It contains 9,928 high-definition (1280 * 720) event samples and involves both Chinese and English characters. We also benchmark multiple STR algorithms as the baselines for future works to compare. In addition, we propose a new event-based scene text recognition framework, termed SimC-ESTR. It first extracts the event features using a visual encoder and projects them into tokens using a Q-former module. More importantly, we propose to augment the vision tokens based on a memory mechanism before feeding into the large language models. A similarity-based error correction mechanism is embedded within the large language model to correct potential minor errors fundamentally based on contextual information. Extensive experiments on the newly proposed EventSTR dataset and two simulation STR datasets fully demonstrate the effectiveness of our proposed model. We believe that the dataset and algorithmic model can innovatively propose an event-based STR task and are expected to accelerate the application of event cameras in various industries. The source code and pre-trained models will be released on https://github.com/Event-AHU/EventSTR
Abstract:Nuclear fusion is one of the most promising ways for humans to obtain infinite energy. Currently, with the rapid development of artificial intelligence, the mission of nuclear fusion has also entered a critical period of its development. How to let more people to understand nuclear fusion and join in its research is one of the effective means to accelerate the implementation of fusion. This paper proposes the first large model in the field of nuclear fusion, XiHeFusion, which is obtained through supervised fine-tuning based on the open-source large model Qwen2.5-14B. We have collected multi-source knowledge about nuclear fusion tasks to support the training of this model, including the common crawl, eBooks, arXiv, dissertation, etc. After the model has mastered the knowledge of the nuclear fusion field, we further used the chain of thought to enhance its logical reasoning ability, making XiHeFusion able to provide more accurate and logical answers. In addition, we propose a test questionnaire containing 180+ questions to assess the conversational ability of this science popularization large model. Extensive experimental results show that our nuclear fusion dialogue model, XiHeFusion, can perform well in answering science popularization knowledge. The pre-trained XiHeFusion model is released on https://github.com/Event-AHU/XiHeFusion.
Abstract:Current works focus on addressing the remote sensing change detection task using bi-temporal images. Although good performance can be achieved, however, seldom of they consider the motion cues which may also be vital. In this work, we revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework. To be specific, given the bi-temporal images, we first transform them into a video using interpolation operations. Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region prediction. Subsequently, we design a novel Coarse-grained Foregrounds Augmented Spatial Encoder module to integrate both global and local information. We also introduce a motion augmented strategy that leverages motion cues as an additional output to aggregate with the spatial features for improved results. Meanwhile, we feed the input image pairs into the ResNet to get the different features and also the spatial blocks for fine-grained feature learning. More importantly, we propose a mask augmented strategy that utilizes coarse-grained changed regions, incorporating them into the decoder blocks to enhance the final changed prediction. Extensive experiments conducted on multiple benchmark datasets fully validated the effectiveness of our proposed framework for remote sensing image change detection. The source code of this paper will be released on https://github.com/Event-AHU/CTM_Remote_Sensing_Change_Detection