Abstract:Nuclear fusion is one of the most promising ways for humans to obtain infinite energy. Currently, with the rapid development of artificial intelligence, the mission of nuclear fusion has also entered a critical period of its development. How to let more people to understand nuclear fusion and join in its research is one of the effective means to accelerate the implementation of fusion. This paper proposes the first large model in the field of nuclear fusion, XiHeFusion, which is obtained through supervised fine-tuning based on the open-source large model Qwen2.5-14B. We have collected multi-source knowledge about nuclear fusion tasks to support the training of this model, including the common crawl, eBooks, arXiv, dissertation, etc. After the model has mastered the knowledge of the nuclear fusion field, we further used the chain of thought to enhance its logical reasoning ability, making XiHeFusion able to provide more accurate and logical answers. In addition, we propose a test questionnaire containing 180+ questions to assess the conversational ability of this science popularization large model. Extensive experimental results show that our nuclear fusion dialogue model, XiHeFusion, can perform well in answering science popularization knowledge. The pre-trained XiHeFusion model is released on https://github.com/Event-AHU/XiHeFusion.
Abstract:We then introduce a novel hierarchical knowledge distillation strategy that incorporates the similarity matrix, feature representation, and response map-based distillation to guide the learning of the student Transformer network. We also enhance the model's ability to capture temporal dependencies by applying the temporal Fourier transform to establish temporal relationships between video frames. We adapt the network model to specific target objects during testing via a newly proposed test-time tuning strategy to achieve high performance and flexibility in target tracking. Recognizing the limitations of existing event-based tracking datasets, which are predominantly low-resolution, we propose EventVOT, the first large-scale high-resolution event-based tracking dataset. It comprises 1141 videos spanning diverse categories such as pedestrians, vehicles, UAVs, ping pong, etc. Extensive experiments on both low-resolution (FE240hz, VisEvent, FELT), and our newly proposed high-resolution EventVOT dataset fully validated the effectiveness of our proposed method. Both the benchmark dataset and source code have been released on https://github.com/Event-AHU/EventVOT_Benchmark
Abstract:The knowledge tracing (KT) problem is an extremely important topic in personalized education, which aims to predict whether students can correctly answer the next question based on their past question-answer records. Prior work on this task mainly focused on learning the sequence of behaviors based on the IDs or textual information. However, these studies usually fail to capture students' sufficient behavioral patterns without reasoning with rich world knowledge about questions. In this paper, we propose a large language models (LLMs)-based framework for KT, named \texttt{\textbf{LLM-KT}}, to integrate the strengths of LLMs and traditional sequence interaction models. For task-level alignment, we design Plug-and-Play instruction to align LLMs with KT, leveraging LLMs' rich knowledge and powerful reasoning capacity. For modality-level alignment, we design the plug-in context and sequence to integrate multiple modalities learned by traditional methods. To capture the long context of history records, we present a plug-in context to flexibly insert the compressed context embedding into LLMs using question-specific and concept-specific tokens. Furthermore, we introduce a plug-in sequence to enhance LLMs with sequence interaction behavior representation learned by traditional sequence models using a sequence adapter. Extensive experiments show that \texttt{\textbf{LLM-KT}} obtains state-of-the-art performance on four typical datasets by comparing it with approximately 20 strong baselines.
Abstract:This study introduces a novel method that employs tag annotation coupled with the ChatGPT language model to analyze student learning behaviors and generate personalized feedback. Central to this approach is the conversion of complex student data into an extensive set of tags, which are then decoded through tailored prompts to deliver constructive feedback that encourages rather than discourages students. This methodology focuses on accurately feeding student data into large language models and crafting prompts that enhance the constructive nature of feedback. The effectiveness of this approach was validated through surveys conducted with over 20 mathematics teachers, who confirmed the reliability of the generated reports. This method can be seamlessly integrated into intelligent adaptive learning systems or provided as a tool to significantly reduce the workload of teachers, providing accurate and timely feedback to students. By transforming raw educational data into interpretable tags, this method supports the provision of efficient and timely personalized learning feedback that offers constructive suggestions tailored to individual learner needs.
Abstract:Efficient key-value (KV) cache compression is critical for scaling transformer-based Large Language Models (LLMs) in long sequences and resource-limited settings. Existing methods evict tokens based on their positions or importance scores, but position-based strategies can miss crucial information outside predefined regions, while those relying on global importance scores resulting in strong regional biases, limiting the KV cache's overall context retention and potentially impairing the performance of LLMs on complex tasks. Our wavelet analysis reveals that as tokens approach the end of sequence, their contributions to generation gradually increase and tends to diverge more from neighboring tokens, indicating a smooth transition with increasing complexity and variability from distant to nearby context. Motivated by this observation, we propose TreeKV, an intuitive, training-free method that employs a tree structure for smooth cache compression. TreeKV maintains a fixed cache size, allowing LLMs to deliver high-quality output even in long text scenarios. Unlike most compression methods, TreeKV is applicable to both the generation and prefilling stages. It consistently surpasses all baseline models in language modeling tasks on PG19 and OpenWebText2, allowing LLMs trained with short context window to generalize to longer window with a 16x cache reduction. On the Longbench benchmark, TreeKV achieves the best performance with only 6\% of the budget at optimal efficiency.
Abstract:X-ray image based medical report generation achieves significant progress in recent years with the help of the large language model, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code of this work is released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
Abstract:The development of large language models has ushered in new paradigms for education. This paper centers on the multi-Agent system in education and proposes the von Neumann multi-Agent system framework. It breaks down each AI Agent into four modules: control unit, logic unit, storage unit, and input-output devices, defining four types of operations: task deconstruction, self-reflection, memory processing, and tool invocation. Furthermore, it introduces related technologies such as Chain-of-Thought, Reson+Act, and Multi-Agent Debate associated with these four types of operations. The paper also discusses the ability enhancement cycle of a multi-Agent system for education, including the outer circulation for human learners to promote knowledge construction and the inner circulation for LLM-based-Agents to enhance swarm intelligence. Through collaboration and reflection, the multi-Agent system can better facilitate human learners' learning and enhance their teaching abilities in this process.
Abstract:Vision language models (VLMs) like CLIP show stellar zero-shot capability on classification benchmarks. However, selecting the VLM with the highest performance on the unlabeled downstream task is non-trivial. Existing VLM selection methods focus on the class-name-only setting, relying on a supervised large-scale dataset and large language models, which may not be accessible or feasible during deployment. This paper introduces the problem of \textbf{unsupervised vision-language model selection}, where only unsupervised downstream datasets are available, with no additional information provided. To solve this problem, we propose a method termed Visual-tExtual Graph Alignment (VEGA), to select VLMs without any annotations by measuring the alignment of the VLM between the two modalities on the downstream task. VEGA is motivated by the pretraining paradigm of VLMs, which aligns features with the same semantics from the visual and textual modalities, thereby mapping both modalities into a shared representation space. Specifically, we first construct two graphs on the vision and textual features, respectively. VEGA is then defined as the overall similarity between the visual and textual graphs at both node and edge levels. Extensive experiments across three different benchmarks, covering a variety of application scenarios and downstream datasets, demonstrate that VEGA consistently provides reliable and accurate estimates of VLMs' performance on unlabeled downstream tasks.
Abstract:In this work, we introduce CodeRepoQA, a large-scale benchmark specifically designed for evaluating repository-level question-answering capabilities in the field of software engineering. CodeRepoQA encompasses five programming languages and covers a wide range of scenarios, enabling comprehensive evaluation of language models. To construct this dataset, we crawl data from 30 well-known repositories in GitHub, the largest platform for hosting and collaborating on code, and carefully filter raw data. In total, CodeRepoQA is a multi-turn question-answering benchmark with 585,687 entries, covering a diverse array of software engineering scenarios, with an average of 6.62 dialogue turns per entry. We evaluate ten popular large language models on our dataset and provide in-depth analysis. We find that LLMs still have limitations in question-answering capabilities in the field of software engineering, and medium-length contexts are more conducive to LLMs' performance. The entire benchmark is publicly available at https://github.com/kinesiatricssxilm14/CodeRepoQA.
Abstract:Large Language Models (LLMs) have become increasingly integral to enhancing developer productivity, particularly in code generation, comprehension, and repair tasks. However, fine-tuning these models with high-quality, real-world data is challenging due to privacy concerns and the lack of accessible, labeled datasets. In this paper, we present DialogAgent, an automated tool for generating synthetic training data that closely mimics real developer interactions within Integrated Development Environments (IDEs). DialogAgent enables the production of diverse, high-fidelity query-response pairs by simulating multi-turn dialogues and contextual behaviors observed in real-world programming scenarios. The tool significantly reduces the reliance on manual data generation, increasing efficiency by 4.8 times compared to traditional methods. Our experiments and online deployment demonstrate substantial improvements in model performance for code-related question-answering tasks: the acceptance rate of responses generated by our in-house model is improved by 33%, after training on synthesized data generated by DialogAgent.