Abstract:Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
Abstract:The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
Abstract:Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
Abstract:Writing effective rebuttals is a high-stakes task that demands more than linguistic fluency, as it requires precise alignment between reviewer intent and manuscript details. Current solutions typically treat this as a direct-to-text generation problem, suffering from hallucination, overlooked critiques, and a lack of verifiable grounding. To address these limitations, we introduce $\textbf{RebuttalAgent}$, the first multi-agents framework that reframes rebuttal generation as an evidence-centric planning task. Our system decomposes complex feedback into atomic concerns and dynamically constructs hybrid contexts by synthesizing compressed summaries with high-fidelity text while integrating an autonomous and on-demand external search module to resolve concerns requiring outside literature. By generating an inspectable response plan before drafting, $\textbf{RebuttalAgent}$ ensures that every argument is explicitly anchored in internal or external evidence. We validate our approach on the proposed $\textbf{RebuttalBench}$ and demonstrate that our pipeline outperforms strong baselines in coverage, faithfulness, and strategic coherence, offering a transparent and controllable assistant for the peer review process. Code will be released.
Abstract:Deep learning systems achieve remarkable empirical performance, yet the stability of the training process itself remains poorly understood. Training unfolds as a high-dimensional dynamical system in which small perturbations to optimization, data, parameters, or learning signals can induce abrupt and irreversible collapse, undermining reproducibility and scalability. We propose a unified dynamical perspective that characterizes training stability as an intrinsic property of learning systems, organized along four interacting dimensions: optimization, environmental/data, parametric, and learning-signal stability. We operationalize this perspective through controlled perturbation auditing of training trajectories, probing how learning dynamics respond to structured disturbances without modifying learning algorithms. Across reinforcement learning and large language model training, we identify three recurring regularities: high final performance is frequently decoupled from training stability; controlled stochasticity consistently buffers learning dynamics across paradigms; and deviations in low-dimensional latent meta-states systematically precede observable performance collapse. Together, these findings establish training stability as a measurable and comparable dynamical property of learning systems, providing a descriptive foundation for studying learning dynamics beyond final performance outcomes.
Abstract:Label assignment is a critical component in object detectors, particularly within DETR-style frameworks where the one-to-one matching strategy, despite its end-to-end elegance, suffers from slow convergence due to sparse supervision. While recent works have explored one-to-many assignments to enrich supervisory signals, they often introduce complex, architecture-specific modifications and typically focus on a single auxiliary strategy, lacking a unified and scalable design. In this paper, we first systematically investigate the effects of ``one-to-many'' supervision and reveal a surprising insight that performance gains are driven not by the sheer quantity of supervision, but by the diversity of the assignment strategies employed. This finding suggests that a more elegant, parameter-efficient approach is attainable. Building on this insight, we propose LoRA-DETR, a flexible and lightweight framework that seamlessly integrates diverse assignment strategies into any DETR-style detector. Our method augments the primary network with multiple Low-Rank Adaptation (LoRA) branches during training, each instantiating a different one-to-many assignment rule. These branches act as auxiliary modules that inject rich, varied supervisory gradients into the main model and are discarded during inference, thus incurring no additional computational cost. This design promotes robust joint optimization while maintaining the architectural simplicity of the original detector. Extensive experiments on different baselines validate the effectiveness of our approach. Our work presents a new paradigm for enhancing detectors, demonstrating that diverse ``one-to-many'' supervision can be integrated to achieve state-of-the-art results without compromising model elegance.
Abstract:Learning under unobservable feedback reliability poses a distinct challenge beyond optimization robustness: a system must decide whether to learn from an experience, not only how to learn stably. We study this setting as Epistemic Identifiability under Unobservable Reliability (EIUR), where each experience has a latent credibility, reliable and unreliable feedback can be locally indistinguishable, and data are generated in a closed loop by the learner's own evolving beliefs and actions. In EIUR, standard robust learning can converge stably yet form high-confidence, systematically wrong beliefs. We propose metacognitive regulation as a practical response: a second, introspective control loop that infers experience credibility from endogenous evidence in the learner's internal dynamics. We formalize this as a modular Monitor-Trust-Regulator (MTR) decomposition and instantiate it with self-diagnosis, which maintains a slowly varying experience-trust variable that softly modulates learning updates, without exogenous reliability labels or an explicit corruption model. Empirically, in the EIUR regimes studied here, self-diagnosis is associated with improved epistemic identifiability. In reinforcement learning, it enables calibrated skepticism and recovery under systematically corrupted rewards. In supervised learning, it exposes a critical dissociation: performance recovery does not imply epistemic recovery. Accuracy can rebound while internal belief dynamics remain locked-in by early misleading data, a failure detectable only through introspective diagnostics. Together, MTR and self-diagnosis provide an organizing abstraction and a concrete design template for intrinsic reliability assessment in autonomous learning under unobservable reliability.
Abstract:Autonomous systems are increasingly deployed in open and dynamic environments -- from city streets to aerial and indoor spaces -- where perception models must remain reliable under sensor noise, environmental variation, and platform shifts. However, even state-of-the-art methods often degrade under unseen conditions, highlighting the need for robust and generalizable robot sensing. The RoboSense 2025 Challenge is designed to advance robustness and adaptability in robot perception across diverse sensing scenarios. It unifies five complementary research tracks spanning language-grounded decision making, socially compliant navigation, sensor configuration generalization, cross-view and cross-modal correspondence, and cross-platform 3D perception. Together, these tasks form a comprehensive benchmark for evaluating real-world sensing reliability under domain shifts, sensor failures, and platform discrepancies. RoboSense 2025 provides standardized datasets, baseline models, and unified evaluation protocols, enabling large-scale and reproducible comparison of robust perception methods. The challenge attracted 143 teams from 85 institutions across 16 countries, reflecting broad community engagement. By consolidating insights from 23 winning solutions, this report highlights emerging methodological trends, shared design principles, and open challenges across all tracks, marking a step toward building robots that can sense reliably, act robustly, and adapt across platforms in real-world environments.
Abstract:The grand vision of enabling persistent, large-scale 3D visual geometry understanding is shackled by the irreconcilable demands of scalability and long-term stability. While offline models like VGGT achieve inspiring geometry capability, their batch-based nature renders them irrelevant for live systems. Streaming architectures, though the intended solution for live operation, have proven inadequate. Existing methods either fail to support truly infinite-horizon inputs or suffer from catastrophic drift over long sequences. We shatter this long-standing dilemma with InfiniteVGGT, a causal visual geometry transformer that operationalizes the concept of a rolling memory through a bounded yet adaptive and perpetually expressive KV cache. Capitalizing on this, we devise a training-free, attention-agnostic pruning strategy that intelligently discards obsolete information, effectively ``rolling'' the memory forward with each new frame. Fully compatible with FlashAttention, InfiniteVGGT finally alleviates the compromise, enabling infinite-horizon streaming while outperforming existing streaming methods in long-term stability. The ultimate test for such a system is its performance over a truly infinite horizon, a capability that has been impossible to rigorously validate due to the lack of extremely long-term, continuous benchmarks. To address this critical gap, we introduce the Long3D benchmark, which, for the first time, enables a rigorous evaluation of continuous 3D geometry estimation on sequences about 10,000 frames. This provides the definitive evaluation platform for future research in long-term 3D geometry understanding. Code is available at: https://github.com/AutoLab-SAI-SJTU/InfiniteVGGT
Abstract:Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions. Nevertheless, perception is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets.