Abstract:Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and collaborative filtering. Following the convention of RS, existing practices exploit unique user representation in their model design. This paper focuses on a challenging scenario where a user has multiple categories of interests. Under this setting, the unique user representation might induce preference bias, especially when the item category distribution is imbalanced. To address this issue, we propose a novel method called \textit{Diversity-Promoting Collaborative Metric Learning} (DPCML), with the hope of considering the commonly ignored minority interest of the user. The key idea behind DPCML is to introduce a set of multiple representations for each user in the system where users' preference toward an item is aggregated by taking the minimum item-user distance among their embedding set. Specifically, we instantiate two effective assignment strategies to explore a proper quantity of vectors for each user. Meanwhile, a \textit{Diversity Control Regularization Scheme} (DCRS) is developed to accommodate the multi-vector representation strategy better. Theoretically, we show that DPCML could induce a smaller generalization error than traditional CML. Furthermore, we notice that CML-based approaches usually require \textit{negative sampling} to reduce the heavy computational burden caused by the pairwise objective therein. In this paper, we reveal the fundamental limitation of the widely adopted hard-aware sampling from the One-Way Partial AUC (OPAUC) perspective and then develop an effective sampling alternative for the CML-based paradigm. Finally, comprehensive experiments over a range of benchmark datasets speak to the efficacy of DPCML. Code are available at \url{https://github.com/statusrank/LibCML}.
Abstract:Learning useful representations for continuous-time dynamic graphs (CTDGs) is challenging, due to the concurrent need to span long node interaction histories and grasp nuanced temporal details. In particular, two problems emerge: (1) Encoding longer histories requires more computational resources, making it crucial for CTDG models to maintain low computational complexity to ensure efficiency; (2) Meanwhile, more powerful models are needed to identify and select the most critical temporal information within the extended context provided by longer histories. To address these problems, we propose a CTDG representation learning model named DyGMamba, originating from the popular Mamba state space model (SSM). DyGMamba first leverages a node-level SSM to encode the sequence of historical node interactions. Another time-level SSM is then employed to exploit the temporal patterns hidden in the historical graph, where its output is used to dynamically select the critical information from the interaction history. We validate DyGMamba experimentally on the dynamic link prediction task. The results show that our model achieves state-of-the-art in most cases. DyGMamba also maintains high efficiency in terms of computational resources, making it possible to capture long temporal dependencies with a limited computation budget.
Abstract:Multi-label ranking, which returns multiple top-ranked labels for each instance, has a wide range of applications for visual tasks. Due to its complicated setting, prior arts have proposed various measures to evaluate model performances. However, both theoretical analysis and empirical observations show that a model might perform inconsistently on different measures. To bridge this gap, this paper proposes a novel measure named Top-K Pairwise Ranking (TKPR), and a series of analyses show that TKPR is compatible with existing ranking-based measures. In light of this, we further establish an empirical surrogate risk minimization framework for TKPR. On one hand, the proposed framework enjoys convex surrogate losses with the theoretical support of Fisher consistency. On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction. Finally, empirical results on benchmark datasets validate the effectiveness of the proposed framework.
Abstract:We propose a unified object-aware temporal learning framework for multi-view 3D detection and tracking tasks. Having observed that the efficacy of the temporal fusion strategy in recent multi-view perception methods may be weakened by distractors and background clutters in historical frames, we propose a cyclic learning mechanism to improve the robustness of multi-view representation learning. The essence is constructing a backward bridge to propagate information from model predictions (e.g., object locations and sizes) to image and BEV features, which forms a circle with regular inference. After backward refinement, the responses of target-irrelevant regions in historical frames would be suppressed, decreasing the risk of polluting future frames and improving the object awareness ability of temporal fusion. We further tailor an object-aware association strategy for tracking based on the cyclic learning model. The cyclic learning model not only provides refined features, but also delivers finer clues (e.g., scale level) for tracklet association. The proposed cycle learning method and association module together contribute a novel and unified multi-task framework. Experiments on nuScenes show that the proposed model achieves consistent performance gains over baselines of different designs (i.e., dense query-based BEVFormer, sparse query-based SparseBEV and LSS-based BEVDet4D) on both detection and tracking evaluation.
Abstract:Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate, especially when timely and accurate treatment is not administered. However, current triage practices in the ED can cause up to approximately half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions. Subsequently, these AAS patients will undergo clinically inaccurate or suboptimal differential diagnosis. Fortunately, even under these suboptimal protocols, nearly all these patients underwent non-contrast CT covering the aorta anatomy at the early stage of differential diagnosis. In this study, we developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results to assist in clinical decision-making. Performance was assessed in two major phases: a multi-center retrospective study (n = 20,750) and an exploration in real-world emergency scenarios (n = 137,525). In the multi-center cohort, DeepAAS achieved a mean area under the receiver operating characteristic curve of 0.958 (95% CI 0.950-0.967). In the real-world cohort, DeepAAS detected 109 AAS patients with misguided initial suspicion, achieving 92.6% (95% CI 76.2%-97.5%) in mean sensitivity and 99.2% (95% CI 99.1%-99.3%) in mean specificity. Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48.8% to 4.8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681.8 (74-11,820) mins to 68.5 (23-195) mins. DeepAAS could effectively fill the gap in the current clinical workflow without requiring additional tests.
Abstract:We propose UAD, a method for vision-based end-to-end autonomous driving (E2EAD), achieving the best open-loop evaluation performance in nuScenes, meanwhile showing robust closed-loop driving quality in CARLA. Our motivation stems from the observation that current E2EAD models still mimic the modular architecture in typical driving stacks, with carefully designed supervised perception and prediction subtasks to provide environment information for oriented planning. Although achieving groundbreaking progress, such design has certain drawbacks: 1) preceding subtasks require massive high-quality 3D annotations as supervision, posing a significant impediment to scaling the training data; 2) each submodule entails substantial computation overhead in both training and inference. To this end, we propose UAD, an E2EAD framework with an unsupervised proxy to address all these issues. Firstly, we design a novel Angular Perception Pretext to eliminate the annotation requirement. The pretext models the driving scene by predicting the angular-wise spatial objectness and temporal dynamics, without manual annotation. Secondly, a self-supervised training strategy, which learns the consistency of the predicted trajectories under different augment views, is proposed to enhance the planning robustness in steering scenarios. Our UAD achieves 38.7% relative improvements over UniAD on the average collision rate in nuScenes and surpasses VAD for 41.32 points on the driving score in CARLA's Town05 Long benchmark. Moreover, the proposed method only consumes 44.3% training resources of UniAD and runs 3.4 times faster in inference. Our innovative design not only for the first time demonstrates unarguable performance advantages over supervised counterparts, but also enjoys unprecedented efficiency in data, training, and inference. Code and models will be released at https://github.com/KargoBot_Research/UAD.
Abstract:Ontologies are widely used for representing domain knowledge and meta data, playing an increasingly important role in Information Systems, the Semantic Web, Bioinformatics and many other domains. However, logical reasoning that ontologies can directly support are quite limited in learning, approximation and prediction. One straightforward solution is to integrate statistical analysis and machine learning. To this end, automatically learning vector representation for knowledge of an ontology i.e., ontology embedding has been widely investigated in recent years. Numerous papers have been published on ontology embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field. To bridge this gap, we write this survey paper, which first introduces different kinds of semantics of ontologies, and formally defines ontology embedding from the perspectives of both mathematics and machine learning, as well as its property of faithfulness. Based on this, it systematically categorises and analyses a relatively complete set of over 80 papers, according to the ontologies and semantics that they aim at, and their technical solutions including geometric modeling, sequence modeling and graph propagation. This survey also introduces the applications of ontology embedding in ontology engineering, machine learning augmentation and life sciences, presents a new library mOWL, and discusses the challenges and future directions.
Abstract:We investigate the task of inserting new concepts extracted from texts into an ontology using language models. We explore an approach with three steps: edge search which is to find a set of candidate locations to insert (i.e., subsumptions between concepts), edge formation and enrichment which leverages the ontological structure to produce and enhance the edge candidates, and edge selection which eventually locates the edge to be placed into. In all steps, we propose to leverage neural methods, where we apply embedding-based methods and contrastive learning with Pre-trained Language Models (PLMs) such as BERT for edge search, and adapt a BERT fine-tuning-based multi-label Edge-Cross-encoder, and Large Language Models (LLMs) such as GPT series, FLAN-T5, and Llama 2, for edge selection. We evaluate the methods on recent datasets created using the SNOMED CT ontology and the MedMentions entity linking benchmark. The best settings in our framework use fine-tuned PLM for search and a multi-label Cross-encoder for selection. Zero-shot prompting of LLMs is still not adequate for the task, and we propose explainable instruction tuning of LLMs for improved performance. Our study shows the advantages of PLMs and highlights the encouraging performance of LLMs that motivates future studies.
Abstract:We apply a state-of-the-art membership inference attack (MIA) to systematically test the practical privacy vulnerability of fine-tuning large image classification models.We focus on understanding the properties of data sets and samples that make them vulnerable to membership inference. In terms of data set properties, we find a strong power law dependence between the number of examples per class in the data and the MIA vulnerability, as measured by true positive rate of the attack at a low false positive rate. For an individual sample, large gradients at the end of training are strongly correlated with MIA vulnerability.
Abstract:Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by re-training on hyperbolic cluster and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained and fine-tuned LMs, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform both pre-trained and fine-tuned LMs in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.