Abstract:Large Language Model (LLM) agents deployed for real-world tasks face a fundamental dilemma: user requests are underspecified, yet agents must decide whether to act on incomplete information or interrupt users for clarification. Existing approaches either rely on brittle confidence thresholds that require task-specific tuning, or fail to account for the varying stakes of different decisions. We introduce a decision-theoretic framework that resolves this trade-off through the Value of Information (VoI), enabling agents to dynamically weigh the expected utility gain from asking questions against the cognitive cost imposed on users. Our inference-time method requires no hyperparameter tuning and adapts seamlessly across contexts-from casual games to medical diagnosis. Experiments across four diverse domains (20 Questions, medical diagnosis, flight booking, and e-commerce) show that VoI consistently matches or exceeds the best manually-tuned baselines, achieving up to 1.36 utility points higher in high-cost settings. This work provides a parameter-free framework for adaptive agent communication that explicitly balances task risk, query ambiguity, and user effort.
Abstract:LLM-as-a-Judge has revolutionized AI evaluation by leveraging large language models for scalable assessments. However, as evaluands become increasingly complex, specialized, and multi-step, the reliability of LLM-as-a-Judge has become constrained by inherent biases, shallow single-pass reasoning, and the inability to verify assessments against real-world observations. This has catalyzed the transition to Agent-as-a-Judge, where agentic judges employ planning, tool-augmented verification, multi-agent collaboration, and persistent memory to enable more robust, verifiable, and nuanced evaluations. Despite the rapid proliferation of agentic evaluation systems, the field lacks a unified framework to navigate this shifting landscape. To bridge this gap, we present the first comprehensive survey tracing this evolution. Specifically, we identify key dimensions that characterize this paradigm shift and establish a developmental taxonomy. We organize core methodologies and survey applications across general and professional domains. Furthermore, we analyze frontier challenges and identify promising research directions, ultimately providing a clear roadmap for the next generation of agentic evaluation.
Abstract:Reasoning-tuned LLMs utilizing long Chain-of-Thought (CoT) excel at single-answer tasks, yet their ability to model Human Label Variation--which requires capturing probabilistic ambiguity rather than resolving it--remains underexplored. We investigate this through systematic disentanglement experiments on distribution-based tasks, employing Cross-CoT experiments to isolate the effect of reasoning text from intrinsic model priors. We observe a distinct "decoupled mechanism": while CoT improves distributional alignment, final accuracy is dictated by CoT content (99% variance contribution), whereas distributional ranking is governed by model priors (over 80%). Step-wise analysis further shows that while CoT's influence on accuracy grows monotonically during the reasoning process, distributional structure is largely determined by LLM's intrinsic priors. These findings suggest that long CoT serves as a decisive LLM decision-maker for the top option but fails to function as a granular distribution calibrator for ambiguous tasks.
Abstract:While confidence estimation is a promising direction for mitigating hallucinations in Large Language Models (LLMs), current research dominantly focuses on single-turn settings. The dynamics of model confidence in multi-turn conversations, where context accumulates and ambiguity is progressively resolved, remain largely unexplored. Reliable confidence estimation in multi-turn settings is critical for many downstream applications, such as autonomous agents and human-in-the-loop systems. This work presents the first systematic study of confidence estimation in multi-turn interactions, establishing a formal evaluation framework grounded in two key desiderata: per-turn calibration and monotonicity of confidence as more information becomes available. To facilitate this, we introduce novel metrics, including a length-normalized Expected Calibration Error (InfoECE), and a new "Hinter-Guesser" paradigm for generating controlled evaluation datasets. Our experiments reveal that widely-used confidence techniques struggle with calibration and monotonicity in multi-turn dialogues. We propose P(Sufficient), a logit-based probe that achieves comparatively better performance, although the task remains far from solved. Our work provides a foundational methodology for developing more reliable and trustworthy conversational agents.
Abstract:Confidence estimation is essential for the reliable deployment of large language models (LLMs). Existing methods are primarily designed for factual QA tasks and often fail to generalize to reasoning tasks. To address this gap, we propose a set of training-free, graph-based confidence estimation methods tailored to reasoning tasks. Our approach models reasoning paths as directed graphs and estimates confidence by exploiting graph properties such as centrality, path convergence, and path weighting. Experiments with two LLMs on three reasoning datasets demonstrate improved confidence estimation and enhanced performance on two downstream tasks.




Abstract:Hallucination remains a major challenge for the safe and trustworthy deployment of large language models (LLMs) in factual content generation. Prior work has explored confidence estimation as an effective approach to hallucination detection, but often relies on post-hoc self-consistency methods that require computationally expensive sampling. Verbalized confidence offers a more efficient alternative, but existing approaches are largely limited to short-form question answering (QA) tasks and do not generalize well to open-ended generation. In this paper, we propose LoVeC (Long-form Verbalized Confidence), an on-the-fly verbalized confidence estimation method for long-form generation. Specifically, we use reinforcement learning (RL) to train LLMs to append numerical confidence scores to each generated statement, serving as a direct and interpretable signal of the factuality of generation. Our experiments consider both on-policy and off-policy RL methods, including DPO, ORPO, and GRPO, to enhance the model calibration. We introduce two novel evaluation settings, free-form tagging and iterative tagging, to assess different verbalized confidence estimation methods. Experiments on three long-form QA datasets show that our RL-trained models achieve better calibration and generalize robustly across domains. Also, our method is highly efficient, as it only requires adding a few tokens to the output being decoded.
Abstract:Large Language Models (LLMs) are prone to hallucination, particularly in long-form generations. A promising direction to mitigate hallucination is to teach LLMs to express uncertainty explicitly when they lack sufficient knowledge. However, existing work lacks direct and fair evaluation of LLMs' ability to express uncertainty effectively in long-form generation. To address this gap, we first introduce UNCLE, a benchmark designed to evaluate uncertainty expression in both long- and short-form question answering (QA). UNCLE spans five domains and comprises 4k long-form QA instances and over 20k short-form QA pairs. Our dataset is the first to directly bridge short- and long-form QA with paired questions and gold-standard answers. Along with the benchmark, we propose a suite of new metrics to assess the models' capabilities to selectively express uncertainty. Using UNCLE, we then demonstrate that current models fail to convey uncertainty appropriately in long-form generation. We further explore both prompt-based and training-based methods to improve models' performance, with the training-based methods yielding greater gains. Further analysis of alignment gaps between short- and long-form uncertainty expression highlights promising directions for future research using UNCLE.
Abstract:Recent advancements in Large Language Models (LLMs) and their multimodal extensions (MLLMs) have substantially enhanced machine reasoning across diverse tasks. However, these models predominantly rely on pure text as the medium for both expressing and structuring reasoning, even when visual information is present. In this work, we argue that language may not always be the most natural or effective modality for reasoning, particularly in tasks involving spatial and geometrical information. Motivated by this, we propose a new paradigm, Visual Planning, which enables planning through purely visual representations, independent of text. In this paradigm, planning is executed via sequences of images that encode step-by-step inference in the visual domain, akin to how humans sketch or visualize future actions. We introduce a novel reinforcement learning framework, Visual Planning via Reinforcement Learning (VPRL), empowered by GRPO for post-training large vision models, leading to substantial improvements in planning in a selection of representative visual navigation tasks, FrozenLake, Maze, and MiniBehavior. Our visual planning paradigm outperforms all other planning variants that conduct reasoning in the text-only space. Our results establish Visual Planning as a viable and promising alternative to language-based reasoning, opening new avenues for tasks that benefit from intuitive, image-based inference.
Abstract:Large Language Models (LLMs) have the tendency to hallucinate, i.e., to sporadically generate false or fabricated information. This presents a major challenge, as hallucinations often appear highly convincing and users generally lack the tools to detect them. Uncertainty quantification (UQ) provides a framework for assessing the reliability of model outputs, aiding in the identification of potential hallucinations. In this work, we introduce pre-trained UQ heads: supervised auxiliary modules for LLMs that substantially enhance their ability to capture uncertainty compared to unsupervised UQ methods. Their strong performance stems from the powerful Transformer architecture in their design and informative features derived from LLM attention maps. Experimental evaluation shows that these heads are highly robust and achieve state-of-the-art performance in claim-level hallucination detection across both in-domain and out-of-domain prompts. Moreover, these modules demonstrate strong generalization to languages they were not explicitly trained on. We pre-train a collection of UQ heads for popular LLM series, including Mistral, Llama, and Gemma 2. We publicly release both the code and the pre-trained heads.
Abstract:Understanding and mitigating hallucinations in Large Language Models (LLMs) is crucial for ensuring reliable content generation. While previous research has primarily focused on "when" LLMs hallucinate, our work explains "why" and directly links model behaviour to the pre-training data that forms their prior knowledge. Specifically, we demonstrate that an asymmetry exists in the recognition of logically equivalent facts, which can be attributed to frequency discrepancies of entities appearing as subjects versus objects. Given that most pre-training datasets are inaccessible, we leverage the fully open-source OLMo series by indexing its Dolma dataset to estimate entity frequencies. Using relational facts (represented as triples) from Wikidata5M, we construct probing datasets to isolate this effect. Our experiments reveal that facts with a high-frequency subject and a low-frequency object are better recognised than their inverse, despite their logical equivalence. The pattern reverses in low-to-high frequency settings, and no statistically significant asymmetry emerges when both entities are high-frequency. These findings highlight the influential role of pre-training data in shaping model predictions and provide insights for inferring the characteristics of pre-training data in closed or partially closed LLMs.