Abstract:When finetuning multiple tasks altogether, it is important to carefully weigh them to get a good performance, but searching for good weights can be difficult and costly. Here, we propose to aid the search with fast previews to quickly get a rough idea of different reweighting options. We use model merging to create previews by simply reusing and averaging parameters of models trained on each task separately (no retraining required). To improve the quality of previews, we propose a Bayesian approach to design new merging strategies by using more flexible posteriors. We validate our findings on vision and natural-language transformers. Our work shows the benefits of model merging via Bayes to improve multitask finetuning.
Abstract:We show that variational learning can significantly improve the accuracy and calibration of Low-Rank Adaptation (LoRA) without a substantial increase in the cost. We replace AdamW by the Improved Variational Online Newton (IVON) algorithm to finetune large language models. For Llama-2 with 7 billion parameters, IVON improves the accuracy over AdamW by 2.8% and expected calibration error by 4.6%. The accuracy is also better than the other Bayesian alternatives, yet the cost is lower and the implementation is easier. Our work provides additional evidence for the effectiveness of IVON for large language models. The code is available at https://github.com/team-approx-bayes/ivon-lora.
Abstract:Large language models (LLMs) present an opportunity to scale high-quality personalized education to all. A promising approach towards this means is to build dialog tutoring models that scaffold students' problem-solving. However, even though existing LLMs perform well in solving reasoning questions, they struggle to precisely detect student's errors and tailor their feedback to these errors. Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions and show how grounding to such verification improves the overall quality of tutor response generation. We collect a dataset of 1K stepwise math reasoning chains with the first error step annotated by teachers. We show empirically that finding the mistake in a student solution is challenging for current models. We propose and evaluate several verifiers for detecting these errors. Using both automatic and human evaluation we show that the student solution verifiers steer the generation model towards highly targeted responses to student errors which are more often correct with less hallucinations compared to existing baselines.
Abstract:Educational chatbots are a promising tool for assisting student learning. However, the development of effective chatbots in education has been challenging, as high-quality data is seldom available in this domain. In this paper, we propose a framework for generating synthetic teacher-student interactions grounded in a set of textbooks. Our approaches capture one aspect of learning interactions where curious students with partial knowledge interactively ask a teacher questions about the material in the textbook. We highlight various quality criteria that such dialogues should fulfill and compare several approaches relying on either prompting or fine-tuning large language models. We use synthetic dialogues to train educational chatbots and show benefits of further fine-tuning in different educational domains. However, human evaluation shows that our best data synthesis method still suffers from hallucinations and tends to reiterate information from previous conversations. Our findings offer insights for future efforts in synthesizing conversational data that strikes a balance between size and quality. We will open-source our data and code.
Abstract:Reframing a negative into a positive thought is at the crux of several cognitive approaches to mental health and psychotherapy that could be made more accessible by large language model-based solutions. Such reframing is typically non-trivial and requires multiple rationalization steps to uncover the underlying issue of a negative thought and transform it to be more positive. However, this rationalization process is currently neglected by both datasets and models which reframe thoughts in one step. In this work, we address this gap by augmenting open-source datasets for positive text rewriting with synthetically-generated Socratic rationales using a novel framework called \textsc{SocraticReframe}. \textsc{SocraticReframe} uses a sequence of question-answer pairs to rationalize the thought rewriting process. We show that such Socratic rationales significantly improve positive text rewriting for different open-source LLMs according to both automatic and human evaluations guided by criteria from psychotherapy research.
Abstract:We give extensive empirical evidence against the common belief that variational learning is ineffective for large neural networks. We show that an optimizer called Improved Variational Online Newton (IVON) consistently matches or outperforms Adam for training large networks such as GPT-2 and ResNets from scratch. IVON's computational costs are nearly identical to Adam but its predictive uncertainty is better. We show several new use cases of IVON where we improve fine-tuning and model merging in Large Language Models, accurately predict generalization error, and faithfully estimate sensitivity to data. We find overwhelming evidence in support of effectiveness of variational learning.
Abstract:Models trained on different datasets can be merged by a weighted-averaging of their parameters, but why does it work and when can it fail? Here, we connect the inaccuracy of weighted-averaging to mismatches in the gradients and propose a new uncertainty-based scheme to improve the performance by reducing the mismatch. The connection also reveals implicit assumptions in other schemes such as averaging, task arithmetic, and Fisher-weighted averaging. Our new method gives consistent improvements for large language models and vision transformers, both in terms of performance and robustness to hyperparameters.
Abstract:Recent advances of powerful Language Models have allowed Natural Language Generation (NLG) to emerge as an important technology that can not only perform traditional tasks like summarisation or translation, but also serve as a natural language interface to a variety of applications. As such, it is crucial that NLG systems are trustworthy and reliable, for example by indicating when they are likely to be wrong; and supporting multiple views, backgrounds and writing styles -- reflecting diverse human sub-populations. In this paper, we argue that a principled treatment of uncertainty can assist in creating systems and evaluation protocols better aligned with these goals. We first present the fundamental theory, frameworks and vocabulary required to represent uncertainty. We then characterise the main sources of uncertainty in NLG from a linguistic perspective, and propose a two-dimensional taxonomy that is more informative and faithful than the popular aleatoric/epistemic dichotomy. Finally, we move from theory to applications and highlight exciting research directions that exploit uncertainty to power decoding, controllable generation, self-assessment, selective answering, active learning and more.
Abstract:Although automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. However, collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this problem, we propose a framework to semi-synthetically generate such dialogues by pairing real teachers with a large language model (LLM) scaffolded to represent common student errors. In this paper, we describe our ongoing efforts to use this framework to collect MathDial, a dataset of currently ca. 1.5k tutoring dialogues grounded in multi-step math word problems. We show that our dataset exhibits rich pedagogical properties, focusing on guiding students using sense-making questions to let them explore problems. Moreover, we outline that MathDial and its grounding annotations can be used to finetune language models to be more effective tutors (and not just solvers) and highlight remaining challenges that need to be addressed by the research community. We will release our dataset publicly to foster research in this socially important area of NLP.
Abstract:This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments.