Abstract:Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
Abstract:We present PeerQA, a real-world, scientific, document-level Question Answering (QA) dataset. PeerQA questions have been sourced from peer reviews, which contain questions that reviewers raised while thoroughly examining the scientific article. Answers have been annotated by the original authors of each paper. The dataset contains 579 QA pairs from 208 academic articles, with a majority from ML and NLP, as well as a subset of other scientific communities like Geoscience and Public Health. PeerQA supports three critical tasks for developing practical QA systems: Evidence retrieval, unanswerable question classification, and answer generation. We provide a detailed analysis of the collected dataset and conduct experiments establishing baseline systems for all three tasks. Our experiments and analyses reveal the need for decontextualization in document-level retrieval, where we find that even simple decontextualization approaches consistently improve retrieval performance across architectures. On answer generation, PeerQA serves as a challenging benchmark for long-context modeling, as the papers have an average size of 12k tokens. Our code and data is available at https://github.com/UKPLab/peerqa.
Abstract:Prior studies have shown that distinguishing text generated by large language models (LLMs) from human-written one is highly challenging, and often no better than random guessing. To verify the generalizability of this finding across languages and domains, we perform an extensive case study to identify the upper bound of human detection accuracy. Across 16 datasets covering 9 languages and 9 domains, 19 annotators achieved an average detection accuracy of 87.6%, thus challenging previous conclusions. We find that major gaps between human and machine text lie in concreteness, cultural nuances, and diversity. Prompting by explicitly explaining the distinctions in the prompts can partially bridge the gaps in over 50% of the cases. However, we also find that humans do not always prefer human-written text, particularly when they cannot clearly identify its source.
Abstract:Free-text explanations are expressive and easy to understand, but many datasets lack annotated explanation data, making it challenging to train models for explainable predictions. To address this, we investigate how to use existing explanation datasets for self-rationalization and evaluate models' out-of-distribution (OOD) performance. We fine-tune T5-Large and OLMo-7B models and assess the impact of fine-tuning data quality, the number of fine-tuning samples, and few-shot selection methods. The models are evaluated on 19 diverse OOD datasets across three tasks: natural language inference (NLI), fact-checking, and hallucination detection in abstractive summarization. For the generated explanation evaluation, we conduct a human study on 13 selected models and study its correlation with the Acceptability score (T5-11B) and three other LLM-based reference-free metrics. Human evaluation shows that the Acceptability score correlates most strongly with human judgments, demonstrating its effectiveness in evaluating free-text explanations. Our findings reveal: 1) few annotated examples effectively adapt models for OOD explanation generation; 2) compared to sample selection strategies, fine-tuning data source has a larger impact on OOD performance; and 3) models with higher label prediction accuracy tend to produce better explanations, as reflected by higher Acceptability scores.
Abstract:Images taken out of their context are the most prevalent form of multimodal misinformation. Debunking them requires (1) providing the true context of the image and (2) checking the veracity of the image's caption. However, existing automated fact-checking methods fail to tackle both objectives explicitly. In this work, we introduce COVE, a new method that predicts first the true COntext of the image and then uses it to predict the VEracity of the caption. COVE beats the SOTA context prediction model on all context items, often by more than five percentage points. It is competitive with the best veracity prediction models on synthetic data and outperforms them on real-world data, showing that it is beneficial to combine the two tasks sequentially. Finally, we conduct a human study that reveals that the predicted context is a reusable and interpretable artifact to verify new out-of-context captions for the same image. Our code and data are made available.
Abstract:Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the \textit{\underline{P}rivate \underline{S}teering for LLM \underline{A}lignment (PSA)} algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our attack is tailored for activation editing and relies solely on the generated texts without their associated probabilities. Our experiments support the theoretical guarantees by showing improved guarantees for our \textit{PSA} algorithm compared to several existing non-private techniques.
Abstract:We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1
Abstract:Large Language Models (LLMs), trained on extensive web-scale corpora, have demonstrated remarkable abilities across diverse tasks, especially as they are scaled up. Nevertheless, even state-of-the-art models struggle in certain cases, sometimes failing at problems solvable by young children, indicating that traditional notions of task complexity are insufficient for explaining LLM capabilities. However, exploring LLM capabilities is complicated by the fact that most widely-used models are also "instruction-tuned" to respond appropriately to prompts. With the goal of disentangling the factors influencing LLM performance, we investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples. Through extensive experiments across various model families, scales and task types, which included instruction tuning 90 different LLMs, we demonstrate that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts. By clarifying what instruction-tuning contributes, we extend prior research into in-context learning, which suggests that base models use priors from pretraining data to solve tasks. Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve, with the added influence of the instruction-tuning dataset.
Abstract:Despite significant efforts to align large language models with human values and ethical guidelines, these models remain susceptible to sophisticated jailbreak attacks that exploit their reasoning capabilities. Traditional safety mechanisms often focus on detecting explicit malicious intent, leaving deeper vulnerabilities unaddressed. In this work, we introduce a jailbreak technique, POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), which leverages contrastive reasoning to elicit unethical responses. POATE generates prompts with semantically opposite intents and combines them with adversarial templates to subtly direct models toward producing harmful responses. We conduct extensive evaluations across six diverse language model families of varying parameter sizes, including LLaMA3, Gemma2, Phi3, and GPT-4, to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. We evaluate our proposed attack against seven safety defenses, revealing their limitations in addressing reasoning-based vulnerabilities. To counteract this, we propose a defense strategy that improves reasoning robustness through chain-of-thought prompting and reverse thinking, mitigating reasoning-driven adversarial exploits.
Abstract:To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models.