Abstract:Large language models (LLMs) are increasingly capable of generating functional source code, raising concerns about authorship, accountability, and security. While detecting AI-generated code is critical, existing datasets and benchmarks are narrow, typically limited to binary human-machine classification under in-distribution settings. To bridge this gap, we introduce $\emph{AICD Bench}$, the most comprehensive benchmark for AI-generated code detection. It spans $\emph{2M examples}$, $\emph{77 models}$ across $\emph{11 families}$, and $\emph{9 programming languages}$, including recent reasoning models. Beyond scale, AICD Bench introduces three realistic detection tasks: ($\emph{i}$)~$\emph{Robust Binary Classification}$ under distribution shifts in language and domain, ($\emph{ii}$)~$\emph{Model Family Attribution}$, grouping generators by architectural lineage, and ($\emph{iii}$)~$\emph{Fine-Grained Human-Machine Classification}$ across human, machine, hybrid, and adversarial code. Extensive evaluation on neural and classical detectors shows that performance remains far below practical usability, particularly under distribution shift and for hybrid or adversarial code. We release AICD Bench as a $\emph{unified, challenging evaluation suite}$ to drive the next generation of robust approaches for AI-generated code detection. The data and the code are available at https://huggingface.co/AICD-bench}.
Abstract:Large language models (LLMs) encode rich cultural knowledge learned from diverse web-scale data, offering an unprecedented opportunity to model cultural commonsense at scale. Yet this knowledge remains mostly implicit and unstructured, limiting its interpretability and use. We present an iterative, prompt-based framework for constructing a Cultural Commonsense Knowledge Graph (CCKG) that treats LLMs as cultural archives, systematically eliciting culture-specific entities, relations, and practices and composing them into multi-step inferential chains across languages. We evaluate CCKG on five countries with human judgments of cultural relevance, correctness, and path coherence. We find that the cultural knowledge graphs are better realized in English, even when the target culture is non-English (e.g., Chinese, Indonesian, Arabic), indicating uneven cultural encoding in current LLMs. Augmenting smaller LLMs with CCKG improves performance on cultural reasoning and story generation, with the largest gains from English chains. Our results show both the promise and limits of LLMs as cultural technologies and that chain-structured cultural knowledge is a practical substrate for culturally grounded NLP.
Abstract:This paper argues that AI-assisted peer review should be verification-first rather than review-mimicking. We propose truth-coupling, i.e. how tightly venue scores track latent scientific truth, as the right objective for review tools. We formalize two forces that drive a phase transition toward proxy-sovereign evaluation: verification pressure, when claims outpace verification capacity, and signal shrinkage, when real improvements become hard to separate from noise. In a minimal model that mixes occasional high-fidelity checks with frequent proxy judgment, we derive an explicit coupling law and an incentive-collapse condition under which rational effort shifts from truth-seeking to proxy optimization, even when current decisions still appear reliable. These results motivate actions for tool builders and program chairs: deploy AI as an adversarial auditor that generates auditable verification artifacts and expands effective verification bandwidth, rather than as a score predictor that amplifies claim inflation.
Abstract:Peer review is at the heart of modern science. As submission numbers rise and research communities grow, the decline in review quality is a popular narrative and a common concern. Yet, is it true? Review quality is difficult to measure, and the ongoing evolution of reviewing practices makes it hard to compare reviews across venues and time. To address this, we introduce a new framework for evidence-based comparative study of review quality and apply it to major AI and machine learning conferences: ICLR, NeurIPS and *ACL. We document the diversity of review formats and introduce a new approach to review standardization. We propose a multi-dimensional schema for quantifying review quality as utility to editors and authors, coupled with both LLM-based and lightweight measurements. We study the relationships between measurements of review quality, and its evolution over time. Contradicting the popular narrative, our cross-temporal analysis reveals no consistent decline in median review quality across venues and years. We propose alternative explanations, and outline recommendations to facilitate future empirical studies of review quality.
Abstract:We expose a critical limitation in current approaches to machine unlearning in language models: despite the apparent success of unlearning algorithms, information about the forgotten data remains linearly decodable from internal representations. To systematically assess this discrepancy, we introduce an interpretable, information-theoretic framework for auditing unlearning using Partial Information Decomposition (PID). By comparing model representations before and after unlearning, we decompose the mutual information with the forgotten data into distinct components, formalizing the notions of unlearned and residual knowledge. Our analysis reveals that redundant information, shared across both models, constitutes residual knowledge that persists post-unlearning and correlates with susceptibility to known adversarial reconstruction attacks. Leveraging these insights, we propose a representation-based risk score that can guide abstention on sensitive inputs at inference time, providing a practical mechanism to mitigate privacy leakage. Our work introduces a principled, representation-level audit for unlearning, offering theoretical insight and actionable tools for safer deployment of language models.
Abstract:Identifying when and where a news image was taken is crucial for journalists and forensic experts to produce credible stories and debunk misinformation. While many existing methods rely on reverse image search (RIS) engines, these tools often fail to return results, thereby limiting their practical applicability. In this work, we address the challenging scenario where RIS evidence is unavailable. We introduce NewsRECON, a method that links images to relevant news articles to infer their date and location from article metadata. NewsRECON leverages a corpus of over 90,000 articles and integrates: (1) a bi-encoder for retrieving event-relevant articles; (2) two cross-encoders for reranking articles by location and event consistency. Experiments on the TARA and 5Pils-OOC show that NewsRECON outperforms prior work and can be combined with a multimodal large language model to achieve new SOTA results in the absence of RIS evidence. We make our code available.
Abstract:We present SciCoQA, a dataset for detecting discrepancies between scientific publications and their codebases to ensure faithful implementations. We construct SciCoQA from GitHub issues and reproducibility papers, and to scale our dataset, we propose a synthetic data generation method for constructing paper-code discrepancies. We analyze the paper-code discrepancies in detail and propose discrepancy types and categories to better understand the occurring mismatches. In total, our dataset consists of 611 paper-code discrepancies (81 real, 530 synthetic), spanning diverse computational science disciplines, including AI, Physics, Quantitative Biology, and others. Our evaluation of 21 LLMs highlights the difficulty of SciCoQA, particularly for instances involving omitted paper details, long-context inputs, and data outside the models' pre-training corpus. The best performing model in our evaluation, GPT-5, can only detect 45.7\% of real-world paper-code discrepancies.
Abstract:Realistic text-to-SQL workflows often require joining multiple tables. As a result, accurately retrieving the relevant set of tables becomes a key bottleneck for end-to-end performance. We study an open-book setting where queries must be answered over large, heterogeneous table collections pooled from many sources, without clean scoping signals such as database identifiers. Here, dense retrieval (DR) achieves high recall but returns many distractors, while join-aware alternatives often rely on extra assumptions and/or incur high inference overhead. We propose CORE-T, a scalable, training-free framework that enriches tables with LLM-generated purpose metadata and pre-computes a lightweight table-compatibility cache. At inference time, DR returns top-K candidates; a single LLM call selects a coherent, joinable subset, and a simple additive adjustment step restores strongly compatible tables. Across Bird, Spider, and MMQA, CORE-T improves table-selection F1 by up to 22.7 points while retrieving up to 42% fewer tables, improving multi-table execution accuracy by up to 5.0 points on Bird and 6.9 points on MMQA, and using 4-5x fewer tokens than LLM-intensive baselines.
Abstract:Multimodal large language models (MLLMs) are increasingly used to automate chart generation from data tables, enabling efficient data analysis and reporting but also introducing new misuse risks. In this work, we introduce ChartAttack, a novel framework for evaluating how MLLMs can be misused to generate misleading charts at scale. ChartAttack injects misleaders into chart designs, aiming to induce incorrect interpretations of the underlying data. Furthermore, we create AttackViz, a chart question-answering (QA) dataset where each (chart specification, QA) pair is labeled with effective misleaders and their induced incorrect answers. Experiments in in-domain and cross-domain settings show that ChartAttack significantly degrades the QA performance of MLLM readers, reducing accuracy by an average of 19.6 points and 14.9 points, respectively. A human study further shows an average 20.2 point drop in accuracy for participants exposed to misleading charts generated by ChartAttack. Our findings highlight an urgent need for robustness and security considerations in the design, evaluation, and deployment of MLLM-based chart generation systems. We make our code and data publicly available.
Abstract:Multi-domain thinking verifiers trained via Reinforcement Learning from Verifiable Rewards (RLVR) are a prominent fixture of the Large Language Model (LLM) post-training pipeline, owing to their ability to robustly rate and rerank model outputs. However, the adoption of such verifiers towards code generation has been comparatively sparse, with execution feedback constituting the dominant signal. Nonetheless, code verifiers remain valuable toward judging model outputs in scenarios where execution feedback is hard to obtain and are a potentially powerful addition to the code generation post-training toolbox. To this end, we create and open-source Aletheia, a controlled testbed that enables execution-grounded evaluation of code verifiers' robustness across disparate policy models and covariate shifts. We examine components of the RLVR-based verifier training recipe widely credited for its success: (1) intermediate thinking traces, (2) learning from negative samples, and (3) on-policy training. While experiments show the optimality of RLVR, we uncover important opportunities to simplify the recipe. Particularly, despite code verification exhibiting positive training- and inference-time scaling, on-policy learning stands out as the key component at small verifier sizes, and thinking-based training emerges as the most important component at larger scales.