Abstract:The surge of interest in culturally aware and adapted Natural Language Processing (NLP) has inspired much recent research. However, the lack of common understanding of the concept of "culture" has made it difficult to evaluate progress in this emerging area. Drawing on prior research in NLP and related fields, we propose an extensive taxonomy of elements of culture that can provide a systematic framework for analyzing and understanding research progress. Using the taxonomy, we survey existing resources and models for culturally aware and adapted NLP, providing an overview of the state of the art and the research gaps that still need to be filled.
Abstract:Prior research has found that differences in the early period of neural network training significantly impact the performance of in-distribution (ID) tasks. However, neural networks are often sensitive to out-of-distribution (OOD) data, making them less reliable in downstream applications. Yet, the impact of the early training period on OOD generalization remains understudied due to its complexity and lack of effective analytical methodologies. In this work, we investigate the relationship between learning dynamics and OOD generalization during the early period of neural network training. We utilize the trace of Fisher Information and sharpness, with a focus on gradual unfreezing (i.e. progressively unfreezing parameters during training) as the methodology for investigation. Through a series of empirical experiments, we show that 1) selecting the number of trainable parameters at different times during training, i.e. realized by gradual unfreezing -- has a minuscule impact on ID results, but greatly affects the generalization to OOD data; 2) the absolute values of sharpness and trace of Fisher Information at the initial period of training are not indicative for OOD generalization, but the relative values could be; 3) the trace of Fisher Information and sharpness may be used as indicators for the removal of interventions during early period of training for better OOD generalization.
Abstract:Large language models (LLMs) are highly adept at question answering and reasoning tasks, but when reasoning in situational context, human expectations vary depending on the relevant cultural common ground. As human languages are associated with diverse cultures, LLMs should also be culturally-diverse reasoners. In this paper, we study the ability of a wide range of state-of-the-art multilingual LLMs (mLLMs) to reason with proverbs and sayings in a conversational context. Our experiments reveal that: (1) mLLMs 'knows' limited proverbs and memorizing proverbs does not mean understanding them within a conversational context; (2) mLLMs struggle to reason with figurative proverbs and sayings, and when asked to select the wrong answer (instead of asking it to select the correct answer); and (3) there is a "culture gap" in mLLMs when reasoning about proverbs and sayings translated from other languages. We construct and release our evaluation dataset MAPS (MulticultrAl Proverbs and Sayings) for proverb understanding with conversational context for six different languages.
Abstract:Standard fine-tuning of language models typically performs well on in-distribution data, but suffers with generalization to distribution shifts. In this work, we aim to improve generalization of adapter-based cross-lingual task transfer where such cross-language distribution shifts are imminent. We investigate scheduled unfreezing algorithms -- originally proposed to mitigate catastrophic forgetting in transfer learning -- for fine-tuning task adapters in cross-lingual transfer. Our experiments show that scheduled unfreezing methods close the gap to full fine-tuning and achieve state-of-the-art transfer performance, suggesting that these methods can go beyond just mitigating catastrophic forgetting. Next, aiming to delve deeper into those empirical findings, we investigate the learning dynamics of scheduled unfreezing using Fisher Information. Our in-depth experiments reveal that scheduled unfreezing induces different learning dynamics compared to standard fine-tuning, and provide evidence that the dynamics of Fisher Information during training correlate with cross-lingual generalization performance. We additionally propose a general scheduled unfreezing algorithm that achieves an average of 2 points improvement over four datasets compared to standard fine-tuning and provides strong empirical evidence for a theory-based justification of the heuristic unfreezing schedule (i.e., the heuristic schedule is implicitly maximizing Fisher Information). Our code will be publicly available.