Abstract:Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
Abstract:Socio-demographic prompting is a commonly employed approach to study cultural biases in LLMs as well as for aligning models to certain cultures. In this paper, we systematically probe four LLMs (Llama 3, Mistral v0.2, GPT-3.5 Turbo and GPT-4) with prompts that are conditioned on culturally sensitive and non-sensitive cues, on datasets that are supposed to be culturally sensitive (EtiCor and CALI) or neutral (MMLU and ETHICS). We observe that all models except GPT-4 show significant variations in their responses on both kinds of datasets for both kinds of prompts, casting doubt on the robustness of the culturally-conditioned prompting as a method for eliciting cultural bias in models or as an alignment strategy. The work also calls rethinking the control experiment design to tease apart the cultural conditioning of responses from "placebo effect", i.e., random perturbations of model responses due to arbitrary tokens in the prompt.
Abstract:Auto-regressive inference of transformers benefit greatly from Key-Value (KV) caching, but can lead to major memory bottlenecks as model size, batch size, and sequence length grow at scale. We introduce Multi-Layer Key-Value (MLKV) sharing, a novel approach extending KV sharing across transformer layers to reduce memory usage beyond what was possible with Multi-Query Attention (MQA) and Grouped-Query Attention (GQA). Evaluations on various NLP benchmarks and inference metrics using uptrained Pythia-160M variants demonstrate that MLKV significantly reduces memory usage with minimal performance loss, reducing KV cache size down to a factor of 6x compared to MQA. These results highlight MLKV's potential for efficient deployment of transformer models at scale. We provide code at https://github.com/zaydzuhri/pythia-mlkv
Abstract:Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Pretrained language models (PLMs) have shown remarkable generalization toward multiple tasks and languages. Nonetheless, the generalization of PLMs towards unseen languages is poor, resulting in significantly worse language performance, or even generating nonsensical responses that are comparable to a random baseline. This limitation has been a longstanding problem of PLMs raising the problem of diversity and equal access to language modeling technology. In this work, we solve this limitation by introducing LinguAlchemy, a regularization technique that incorporates various aspects of languages covering typological, geographical, and phylogenetic constraining the resulting representation of PLMs to better characterize the corresponding linguistics constraints. LinguAlchemy significantly improves the accuracy performance of mBERT and XLM-R on unseen languages by ~18% and ~2%, respectively compared to fully finetuned models and displaying a high degree of unseen language generalization. We further introduce AlchemyScale and AlchemyTune, extension of LinguAlchemy which adjusts the linguistic regularization weights automatically, alleviating the need for hyperparameter search. LinguAlchemy enables better cross-lingual generalization to unseen languages which is vital for better inclusivity and accessibility of PLMs.
Abstract:We expose the limitation of modular multilingual language models (MLMs) in multilingual inference scenarios with unknown languages. Existing evaluations of modular MLMs exclude the involvement of language identification (LID) modules, which obscures the performance of real-case multilingual scenarios of modular MLMs. In this work, we showcase the effect of adding LID on the multilingual evaluation of modular MLMs and provide discussions for closing the performance gap of caused by the pipelined approach of LID and modular MLMs.
Abstract:Significant progress has been made on text generation by pre-trained language models (PLMs), yet distinguishing between human and machine-generated text poses an escalating challenge. This paper offers an in-depth evaluation of three distinct methods used to address this task: traditional shallow learning, Language Model (LM) fine-tuning, and Multilingual Model fine-tuning. These approaches are rigorously tested on a wide range of machine-generated texts, providing a benchmark of their competence in distinguishing between human-authored and machine-authored linguistic constructs. The results reveal considerable differences in performance across methods, thus emphasizing the continued need for advancement in this crucial area of NLP. This study offers valuable insights and paves the way for future research aimed at creating robust and highly discriminative models.
Abstract:Significant progress has been made on Indonesian NLP. Nevertheless, exploration of the code-mixing phenomenon in Indonesian is limited, despite many languages being frequently mixed with Indonesian in daily conversation. In this work, we explore code-mixing in Indonesian with four embedded languages, i.e., English, Sundanese, Javanese, and Malay; and introduce IndoRobusta, a framework to evaluate and improve the code-mixing robustness. Our analysis shows that the pre-training corpus bias affects the model's ability to better handle Indonesian-English code-mixing when compared to other local languages, despite having higher language diversity.
Abstract:We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.