Abstract:Speech foundation models trained at a massive scale, both in terms of model and data size, result in robust systems capable of performing multiple speech tasks, including automatic speech recognition (ASR). These models transcend language and domain barriers, yet effectively measuring their performance remains a challenge. Traditional metrics like word error rate (WER) and character error rate (CER) are commonly used to evaluate ASR performance but often fail to reflect transcription quality in critical contexts, particularly when detecting fabricated outputs. This phenomenon, known as hallucination, is especially concerning in high-stakes domains such as healthcare, legal, and aviation, where errors can have severe consequences. In our work, we address this gap by investigating hallucination in ASR models. We examine how factors such as distribution shifts, model size, and model architecture influence the hallucination error rate (HER), a metric we introduce to quantify hallucinations. Our analysis of 20 ASR models reveals \numinsights~key insights: (1) High WERs can mask low hallucination rates, while low WERs may conceal dangerous hallucinations. (2) Synthetic noise, both adversarial and common perturbations like white noise, pitch shift, and time stretching, increase HER. (3) Distribution shift correlates strongly with HER ($\alpha = 0.91$). Our findings highlight the importance of incorporating HER alongside traditional metrics like WER to better assess ASR model performance, particularly in high-stakes domains.
Abstract:The advent of Music-Language Models has greatly enhanced the automatic music generation capability of AI systems, but they are also limited in their coverage of the musical genres and cultures of the world. We present a study of the datasets and research papers for music generation and quantify the bias and under-representation of genres. We find that only 5.7% of the total hours of existing music datasets come from non-Western genres, which naturally leads to disparate performance of the models across genres. We then investigate the efficacy of Parameter-Efficient Fine-Tuning (PEFT) techniques in mitigating this bias. Our experiments with two popular models -- MusicGen and Mustango, for two underrepresented non-Western music traditions -- Hindustani Classical and Turkish Makam music, highlight the promises as well as the non-triviality of cross-genre adaptation of music through small datasets, implying the need for more equitable baseline music-language models that are designed for cross-cultural transfer learning.
Abstract:To understand the complexity of sequence classification tasks, Hahn et al. (2021) proposed sensitivity as the number of disjoint subsets of the input sequence that can each be individually changed to change the output. Though effective, calculating sensitivity at scale using this framework is costly because of exponential time complexity. Therefore, we introduce a Sensitivity-based Multi-Armed Bandit framework (SMAB), which provides a scalable approach for calculating word-level local (sentence-level) and global (aggregated) sensitivities concerning an underlying text classifier for any dataset. We establish the effectiveness of our approach through various applications. We perform a case study on CHECKLIST generated sentiment analysis dataset where we show that our algorithm indeed captures intuitively high and low-sensitive words. Through experiments on multiple tasks and languages, we show that sensitivity can serve as a proxy for accuracy in the absence of gold data. Lastly, we show that guiding perturbation prompts using sensitivity values in adversarial example generation improves attack success rate by 15.58%, whereas using sensitivity as an additional reward in adversarial paraphrase generation gives a 12.00% improvement over SOTA approaches. Warning: Contains potentially offensive content.
Abstract:Honorifics serve as powerful linguistic markers that reflect social hierarchies and cultural values. This paper presents a large-scale, cross-linguistic exploration of usage of honorific pronouns in Bengali and Hindi Wikipedia articles, shedding light on how socio-cultural factors shape language. Using LLM (GPT-4o), we annotated 10, 000 articles of real and fictional beings in each language for several sociodemographic features such as gender, age, fame, and exoticness, and the use of honorifics. We find that across all feature combinations, use of honorifics is consistently more common in Bengali than Hindi. For both languages, the use non-honorific pronouns is more commonly observed for infamous, juvenile, and exotic beings. Notably, we observe a gender bias in use of honorifics in Hindi, with men being more commonly referred to with honorifics than women.
Abstract:To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models.
Abstract:Recent advances in generative AI have sparked renewed interest and expanded possibilities for music generation. However, the performance and versatility of these systems across musical genres are heavily influenced by the availability of training data. We conducted an extensive analysis of over one million hours of audio datasets used in AI music generation research and manually reviewed more than 200 papers from eleven prominent AI and music conferences and organizations (AAAI, ACM, EUSIPCO, EURASIP, ICASSP, ICML, IJCAI, ISMIR, NeurIPS, NIME, SMC) to identify a critical gap in the fair representation and inclusion of the musical genres of the Global South in AI research. Our findings reveal a stark imbalance: approximately 86% of the total dataset hours and over 93% of researchers focus primarily on music from the Global North. However, around 40% of these datasets include some form of non-Western music, genres from the Global South account for only 14.6% of the data. Furthermore, approximately 51% of the papers surveyed concentrate on symbolic music generation, a method that often fails to capture the cultural nuances inherent in music from regions such as South Asia, the Middle East, and Africa. As AI increasingly shapes the creation and dissemination of music, the significant underrepresentation of music genres in datasets and research presents a serious threat to global musical diversity. We also propose some important steps to mitigate these risks and foster a more inclusive future for AI-driven music generation.
Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
Abstract:The disparity in the languages commonly studied in Natural Language Processing (NLP) is typically reflected by referring to languages as low vs high-resourced. However, there is limited consensus on what exactly qualifies as a `low-resource language.' To understand how NLP papers define and study `low resource' languages, we qualitatively analyzed 150 papers from the ACL Anthology and popular speech-processing conferences that mention the keyword `low-resource.' Based on our analysis, we show how several interacting axes contribute to `low-resourcedness' of a language and why that makes it difficult to track progress for each individual language. We hope our work (1) elicits explicit definitions of the terminology when it is used in papers and (2) provides grounding for the different axes to consider when connoting a language as low-resource.
Abstract:We introduce two paradoxes concerning jailbreak of foundation models: First, it is impossible to construct a perfect jailbreak classifier, and second, a weaker model cannot consistently detect whether a stronger (in a pareto-dominant sense) model is jailbroken or not. We provide formal proofs for these paradoxes and a short case study on Llama and GPT4-o to demonstrate this. We discuss broader theoretical and practical repercussions of these results.
Abstract:Socio-demographic prompting is a commonly employed approach to study cultural biases in LLMs as well as for aligning models to certain cultures. In this paper, we systematically probe four LLMs (Llama 3, Mistral v0.2, GPT-3.5 Turbo and GPT-4) with prompts that are conditioned on culturally sensitive and non-sensitive cues, on datasets that are supposed to be culturally sensitive (EtiCor and CALI) or neutral (MMLU and ETHICS). We observe that all models except GPT-4 show significant variations in their responses on both kinds of datasets for both kinds of prompts, casting doubt on the robustness of the culturally-conditioned prompting as a method for eliciting cultural bias in models or as an alignment strategy. The work also calls rethinking the control experiment design to tease apart the cultural conditioning of responses from "placebo effect", i.e., random perturbations of model responses due to arbitrary tokens in the prompt.