Abstract:Although large vision-language-action (VLA) models pretrained on extensive robot datasets offer promising generalist policies for robotic learning, they still struggle with spatial-temporal dynamics in interactive robotics, making them less effective in handling complex tasks, such as manipulation. In this work, we introduce visual trace prompting, a simple yet effective approach to facilitate VLA models' spatial-temporal awareness for action prediction by encoding state-action trajectories visually. We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories using visual trace prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance, outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks and exhibiting robust generalization across diverse embodiments and scenarios. To further validate the effectiveness and generality of our method, we present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while significantly improving inference efficiency.
Abstract:A large host of scientific journals and conferences solicit peer reviews from multiple reviewers for the same submission, aiming to gather a broader range of perspectives and mitigate individual biases. In this work, we reflect on the role of diversity in the slate of reviewers assigned to evaluate a submitted paper as a factor in diversifying perspectives and improving the utility of the peer-review process. We propose two measures for assessing review utility: review coverage -- reviews should cover most contents of the paper -- and review redundancy -- reviews should add information not already present in other reviews. We hypothesize that reviews from diverse reviewers will exhibit high coverage and low redundancy. We conduct a causal study of different measures of reviewer diversity on review coverage and redundancy using observational data from a peer-reviewed conference with approximately 5,000 submitted papers. Our study reveals disparate effects of different diversity measures on review coverage and redundancy. Our study finds that assigning a group of reviewers that are topically diverse, have different seniority levels, or have distinct publication networks leads to broader coverage of the paper or review criteria, but we find no evidence of an increase in coverage for reviewer slates with reviewers from diverse organizations or geographical locations. Reviewers from different organizations, seniority levels, topics, or publications networks (all except geographical diversity) lead to a decrease in redundancy in reviews. Furthermore, publication network-based diversity alone also helps bring in varying perspectives (that is, low redundancy), even within specific review criteria. Our study adopts a group decision-making perspective for reviewer assignments in peer review and suggests dimensions of diversity that can help guide the reviewer assignment process.
Abstract:Deaf and hard-of-hearing (DHH) students face significant barriers in accessing science, technology, engineering, and mathematics (STEM) education, notably due to the scarcity of STEM resources in signed languages. To help address this, we introduce ASL STEM Wiki: a parallel corpus of 254 Wikipedia articles on STEM topics in English, interpreted into over 300 hours of American Sign Language (ASL). ASL STEM Wiki is the first continuous signing dataset focused on STEM, facilitating the development of AI resources for STEM education in ASL. We identify several use cases of ASL STEM Wiki with human-centered applications. For example, because this dataset highlights the frequent use of fingerspelling for technical concepts, which inhibits DHH students' ability to learn, we develop models to identify fingerspelled words -- which can later be used to query for appropriate ASL signs to suggest to interpreters.
Abstract:Compositional reasoning in Vision-Language Models (VLMs) remains challenging as these models often struggle to relate objects, attributes, and spatial relationships. Recent methods aim to address these limitations by relying on the semantics of the textual description, using Large Language Models (LLMs) to break them down into subsets of questions and answers. However, these methods primarily operate on the surface level, failing to incorporate deeper lexical understanding while introducing incorrect assumptions generated by the LLM. In response to these issues, we present Caption Expansion with Contradictions and Entailments (CECE), a principled approach that leverages Natural Language Inference (NLI) to generate entailments and contradictions from a given premise. CECE produces lexically diverse sentences while maintaining their core meaning. Through extensive experiments, we show that CECE enhances interpretability and reduces overreliance on biased or superficial features. By balancing CECE along the original premise, we achieve significant improvements over previous methods without requiring additional fine-tuning, producing state-of-the-art results on benchmarks that score agreement with human judgments for image-text alignment, and achieving an increase in performance on Winoground of +19.2% (group score) and +12.9% on EqBen (group score) over the best prior work (finetuned with targeted data).
Abstract:Recent advancements of large language models (LLMs) have led to claims of AI surpassing humans in natural language processing (NLP) tasks such as textual understanding and reasoning. This work investigates these assertions by introducing CAIMIRA, a novel framework rooted in item response theory (IRT) that enables quantitative assessment and comparison of problem-solving abilities of question-answering (QA) agents: humans and AI systems. Through analysis of over 300,000 responses from ~70 AI systems and 155 humans across thousands of quiz questions, CAIMIRA uncovers distinct proficiency patterns in knowledge domains and reasoning skills. Humans outperform AI systems in knowledge-grounded abductive and conceptual reasoning, while state-of-the-art LLMs like GPT-4 and LLaMA show superior performance on targeted information retrieval and fact-based reasoning, particularly when information gaps are well-defined and addressable through pattern matching or data retrieval. These findings highlight the need for future QA tasks to focus on questions that challenge not only higher-order reasoning and scientific thinking, but also demand nuanced linguistic interpretation and cross-contextual knowledge application, helping advance AI developments that better emulate or complement human cognitive abilities in real-world problem-solving.
Abstract:AI-based systems such as language models can replicate and amplify social biases reflected in their training data. Among other questionable behavior, this can lead to LM-generated text--and text suggestions--that contain normatively inappropriate stereotypical associations. In this paper, we consider the question of how "debiasing" a language model impacts stories that people write using that language model in a predictive text scenario. We find that (n=414), in certain scenarios, language model suggestions that align with common social stereotypes are more likely to be accepted by human authors. Conversely, although anti-stereotypical language model suggestions sometimes lead to an increased rate of anti-stereotypical stories, this influence is far from sufficient to lead to "fully debiased" stories.
Abstract:Social science research has shown that candidates with names indicative of certain races or genders often face discrimination in employment practices. Similarly, Large Language Models (LLMs) have demonstrated racial and gender biases in various applications. In this study, we utilize GPT-3.5-Turbo and Llama 3-70B-Instruct to simulate hiring decisions and salary recommendations for candidates with 320 first names that strongly signal their race and gender, across over 750,000 prompts. Our empirical results indicate a preference among these models for hiring candidates with White female-sounding names over other demographic groups across 40 occupations. Additionally, even among candidates with identical qualifications, salary recommendations vary by as much as 5% between different subgroups. A comparison with real-world labor data reveals inconsistent alignment with U.S. labor market characteristics, underscoring the necessity of risk investigation of LLM-powered systems.
Abstract:The ubiquitousness of social media has led to the need for reliable and efficient detection of offensive content to limit harmful effects. This has led to a proliferation of datasets and models related to detecting offensive content. While sophisticated models have attained strong performance on individual datasets, these models often do not generalize due to differences between how "offensive content" is conceptualized, and the resulting differences in how these datasets are labeled. In this paper, we introduce HateCOT, a dataset of 52,000 samples drawn from diverse existing sources with explanations generated by GPT-3.5-Turbo and human-curated. We show that pre-training models for the detection of offensive content on HateCOT significantly boots open-sourced Language Models on three benchmark datasets in both zero and few-shot settings, despite differences in domain and task.} We further find that HateCOT enables effective K-shot fine-tuning in the low-resource settings.
Abstract:This paper addresses the challenge of leveraging imperfect language models to guide human decision-making in the context of a grounded navigation task. We show that an imperfect instruction generation model can be complemented with an effective communication mechanism to become more successful at guiding humans. The communication mechanism we build comprises models that can detect potential hallucinations in instructions and suggest practical alternatives, and an intuitive interface to present that information to users. We show that this approach reduces the human navigation error by up to 29% with no additional cognitive burden. This result underscores the potential of integrating diverse communication channels into AI systems to compensate for their imperfections and enhance their utility for humans.
Abstract:Temporal action abstractions, along with belief state representations, are a powerful knowledge sharing mechanism for sequential decision making. In this work, we propose a novel view that treats inducing temporal action abstractions as a sequence compression problem. To do so, we bring a subtle but critical component of LLM training pipelines -- input tokenization via byte pair encoding (BPE) -- to the seemingly distant task of learning skills of variable time span in continuous control domains. We introduce an approach called Primitive Sequence Encoding (PRISE) that combines continuous action quantization with BPE to learn powerful action abstractions. We empirically show that high-level skills discovered by PRISE from a multitask set of robotic manipulation demonstrations significantly boost the performance of both multitask imitation learning as well as few-shot imitation learning on unseen tasks. Our code will be released at https://github.com/FrankZheng2022/PRISE.