Abstract:We study the problem of estimating the body movements of a camera wearer from egocentric videos. Current methods for ego-body pose estimation rely on temporally dense sensor data, such as IMU measurements from spatially sparse body parts like the head and hands. However, we propose that even temporally sparse observations, such as hand poses captured intermittently from egocentric videos during natural or periodic hand movements, can effectively constrain overall body motion. Naively applying diffusion models to generate full-body pose from head pose and sparse hand pose leads to suboptimal results. To overcome this, we develop a two-stage approach that decomposes the problem into temporal completion and spatial completion. First, our method employs masked autoencoders to impute hand trajectories by leveraging the spatiotemporal correlations between the head pose sequence and intermittent hand poses, providing uncertainty estimates. Subsequently, we employ conditional diffusion models to generate plausible full-body motions based on these temporally dense trajectories of the head and hands, guided by the uncertainty estimates from the imputation. The effectiveness of our method was rigorously tested and validated through comprehensive experiments conducted on various HMD setup with AMASS and Ego-Exo4D datasets.
Abstract:We introduce Constrained Human-AI Cooperation (CHAIC), an inclusive embodied social intelligence challenge designed to test social perception and cooperation in embodied agents. In CHAIC, the goal is for an embodied agent equipped with egocentric observations to assist a human who may be operating under physical constraints -- e.g., unable to reach high places or confined to a wheelchair -- in performing common household or outdoor tasks as efficiently as possible. To achieve this, a successful helper must: (1) infer the human's intents and constraints by following the human and observing their behaviors (social perception), and (2) make a cooperative plan tailored to the human partner to solve the task as quickly as possible, working together as a team (cooperative planning). To benchmark this challenge, we create four new agents with real physical constraints and eight long-horizon tasks featuring both indoor and outdoor scenes with various constraints, emergency events, and potential risks. We benchmark planning- and learning-based baselines on the challenge and introduce a new method that leverages large language models and behavior modeling. Empirical evaluations demonstrate the effectiveness of our benchmark in enabling systematic assessment of key aspects of machine social intelligence. Our benchmark and code are publicly available at https://github.com/UMass-Foundation-Model/CHAIC.
Abstract:Scene understanding is a fundamental capability needed in many domains, ranging from question-answering to robotics. Unlike recent end-to-end approaches that must explicitly learn varying compositions of the same scene, our method reasons over their constituent objects and analyzes their arrangement to infer a scene's meaning. We propose a novel approach that reasons over a scene's scene- and knowledge-graph, capturing spatial information while being able to utilize general domain knowledge in a joint graph search. Empirically, we demonstrate the feasibility of our method on the ADE20K dataset and compare it to current scene understanding approaches.
Abstract:We introduce the Multi-Motion Discrete Diffusion Models (M2D2M), a novel approach for human motion generation from textual descriptions of multiple actions, utilizing the strengths of discrete diffusion models. This approach adeptly addresses the challenge of generating multi-motion sequences, ensuring seamless transitions of motions and coherence across a series of actions. The strength of M2D2M lies in its dynamic transition probability within the discrete diffusion model, which adapts transition probabilities based on the proximity between motion tokens, encouraging mixing between different modes. Complemented by a two-phase sampling strategy that includes independent and joint denoising steps, M2D2M effectively generates long-term, smooth, and contextually coherent human motion sequences, utilizing a model trained for single-motion generation. Extensive experiments demonstrate that M2D2M surpasses current state-of-the-art benchmarks for motion generation from text descriptions, showcasing its efficacy in interpreting language semantics and generating dynamic, realistic motions.
Abstract:Video Anomaly Detection (VAD) is crucial for applications such as security surveillance and autonomous driving. However, existing VAD methods provide little rationale behind detection, hindering public trust in real-world deployments. In this paper, we approach VAD with a reasoning framework. Although Large Language Models (LLMs) have shown revolutionary reasoning ability, we find that their direct use falls short of VAD. Specifically, the implicit knowledge pre-trained in LLMs focuses on general context and thus may not apply to every specific real-world VAD scenario, leading to inflexibility and inaccuracy. To address this, we propose AnomalyRuler, a novel rule-based reasoning framework for VAD with LLMs. AnomalyRuler comprises two main stages: induction and deduction. In the induction stage, the LLM is fed with few-shot normal reference samples and then summarizes these normal patterns to induce a set of rules for detecting anomalies. The deduction stage follows the induced rules to spot anomalous frames in test videos. Additionally, we design rule aggregation, perception smoothing, and robust reasoning strategies to further enhance AnomalyRuler's robustness. AnomalyRuler is the first reasoning approach for the one-class VAD task, which requires only few-normal-shot prompting without the need for full-shot training, thereby enabling fast adaption to various VAD scenarios. Comprehensive experiments across four VAD benchmarks demonstrate AnomalyRuler's state-of-the-art detection performance and reasoning ability.
Abstract:We introduce PlausiVL, a large video-language model for anticipating action sequences that are plausible in the real-world. While significant efforts have been made towards anticipating future actions, prior approaches do not take into account the aspect of plausibility in an action sequence. To address this limitation, we explore the generative capability of a large video-language model in our work and further, develop the understanding of plausibility in an action sequence by introducing two objective functions, a counterfactual-based plausible action sequence learning loss and a long-horizon action repetition loss. We utilize temporal logical constraints as well as verb-noun action pair logical constraints to create implausible/counterfactual action sequences and use them to train the model with plausible action sequence learning loss. This loss helps the model to differentiate between plausible and not plausible action sequences and also helps the model to learn implicit temporal cues crucial for the task of action anticipation. The long-horizon action repetition loss puts a higher penalty on the actions that are more prone to repetition over a longer temporal window. With this penalization, the model is able to generate diverse, plausible action sequences. We evaluate our approach on two large-scale datasets, Ego4D and EPIC-Kitchens-100, and show improvements on the task of action anticipation.
Abstract:What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.
Abstract:This paper focuses on building object-centric representations for long-term action anticipation in videos. Our key motivation is that objects provide important cues to recognize and predict human-object interactions, especially when the predictions are longer term, as an observed "background" object could be used by the human actor in the future. We observe that existing object-based video recognition frameworks either assume the existence of in-domain supervised object detectors or follow a fully weakly-supervised pipeline to infer object locations from action labels. We propose to build object-centric video representations by leveraging visual-language pretrained models. This is achieved by "object prompts", an approach to extract task-specific object-centric representations from general-purpose pretrained models without finetuning. To recognize and predict human-object interactions, we use a Transformer-based neural architecture which allows the "retrieval" of relevant objects for action anticipation at various time scales. We conduct extensive evaluations on the Ego4D, 50Salads, and EGTEA Gaze+ benchmarks. Both quantitative and qualitative results confirm the effectiveness of our proposed method.
Abstract:In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) for visual commonsense reasoning (VCR). We categorize the problem of VCR into visual commonsense understanding (VCU) and visual commonsense inference (VCI). For VCU, which involves perceiving the literal visual content, pre-trained VLMs exhibit strong cross-dataset generalization. On the other hand, in VCI, where the goal is to infer conclusions beyond image content, VLMs face difficulties. We find that a baseline where VLMs provide perception results (image captions) to LLMs leads to improved performance on VCI. However, we identify a challenge with VLMs' passive perception, which often misses crucial context information, leading to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we suggest a collaborative approach where LLMs, when uncertain about their reasoning, actively direct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. In our method, named ViCor, pre-trained LLMs serve as problem classifiers to analyze the problem category, VLM commanders to leverage VLMs differently based on the problem classification, and visual commonsense reasoners to answer the question. VLMs will perform visual recognition and understanding. We evaluate our framework on two VCR benchmark datasets and outperform all other methods that do not require in-domain supervised fine-tuning.
Abstract:Can we better anticipate an actor's future actions (e.g. mix eggs) by knowing what commonly happens after his/her current action (e.g. crack eggs)? What if we also know the longer-term goal of the actor (e.g. making egg fried rice)? The long-term action anticipation (LTA) task aims to predict an actor's future behavior from video observations in the form of verb and noun sequences, and it is crucial for human-machine interaction. We propose to formulate the LTA task from two perspectives: a bottom-up approach that predicts the next actions autoregressively by modeling temporal dynamics; and a top-down approach that infers the goal of the actor and plans the needed procedure to accomplish the goal. We hypothesize that large language models (LLMs), which have been pretrained on procedure text data (e.g. recipes, how-tos), have the potential to help LTA from both perspectives. It can help provide the prior knowledge on the possible next actions, and infer the goal given the observed part of a procedure, respectively. To leverage the LLMs, we propose a two-stage framework, AntGPT. It first recognizes the actions already performed in the observed videos and then asks an LLM to predict the future actions via conditioned generation, or to infer the goal and plan the whole procedure by chain-of-thought prompting. Empirical results on the Ego4D LTA v1 and v2 benchmarks, EPIC-Kitchens-55, as well as EGTEA GAZE+ demonstrate the effectiveness of our proposed approach. AntGPT achieves state-of-the-art performance on all above benchmarks, and can successfully infer the goal and thus perform goal-conditioned "counterfactual" prediction via qualitative analysis. Code and model will be released at https://brown-palm.github.io/AntGPT