Abstract:Divergent thinking, the cognitive process of generating diverse solutions, is a hallmark of human creativity and problem-solving. For machines, sampling diverse solution trajectories in complex reasoning problems is crucial for robust outcomes, data augmentation, and enhanced model generalization. Large language models (LLMs) often struggle with generating high-quality, diverse reasoning. While supervised fine-tuning helps with quality, it requires extensive supervision data to capture the full diversity of solutions. Alternatively, reinforcement learning methods like PPO aim to find limited highest-reward solutions while neglecting the solution diversity, akin to convergent thinking. To address these limitations, we propose Flow of Reasoning (FoR) -- an efficient LLM training approach enabling diverse reasoning with minimal data. FoR formulates multi-step LLM reasoning as a Markovian flow from an initial state to terminal states. The formulation allows to adapt principled GFlowNet approaches to train the LLM as a policy, which is able to sample multiple reasoning paths with probabilities proportional to the unnormalized reward. Empirical results show that, with limited training data (e.g., 15 examples), FoR can discover diverse high-quality solutions that excel greatly beyond current state-of-the-art methods across three tasks, including embodied reasoning (BlocksWorld), math puzzle solving (Game24), and logical reasoning (PrOntoQA). Code is available at https://github.com/Yu-Fangxu/FoR.
Abstract:LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of thorough evaluations and the complexity of financial tasks. This along with the rapid development of LLMs, highlights the urgent need for a systematic financial evaluation benchmark for LLMs. In this paper, we introduce FinBen, the first comprehensive open-sourced evaluation benchmark, specifically designed to thoroughly assess the capabilities of LLMs in the financial domain. FinBen encompasses 35 datasets across 23 financial tasks, organized into three spectrums of difficulty inspired by the Cattell-Horn-Carroll theory, to evaluate LLMs' cognitive abilities in inductive reasoning, associative memory, quantitative reasoning, crystallized intelligence, and more. Our evaluation of 15 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals insights into their strengths and limitations within the financial domain. The findings indicate that GPT-4 leads in quantification, extraction, numerical reasoning, and stock trading, while Gemini shines in generation and forecasting; however, both struggle with complex extraction and forecasting, showing a clear need for targeted enhancements. Instruction tuning boosts simple task performance but falls short in improving complex reasoning and forecasting abilities. FinBen seeks to continuously evaluate LLMs in finance, fostering AI development with regular updates of tasks and models.
Abstract:While many automatic hallucination detection techniques have been proposed for English texts, their effectiveness in multilingual contexts remains unexplored. This paper aims to bridge the gap in understanding how these hallucination detection metrics perform on non-English languages. We evaluate the efficacy of various detection metrics, including lexical metrics like ROUGE and Named Entity Overlap and Natural Language Inference (NLI)-based metrics, at detecting hallucinations in biographical summaries in many languages; we also evaluate how correlated these different metrics are to gauge whether they measure the same phenomena. Our empirical analysis reveals that while lexical metrics show limited effectiveness, NLI-based metrics perform well in high-resource languages at the sentence level. In contrast, NLI-based metrics often fail to detect atomic fact hallucinations. Our findings highlight existing gaps in multilingual hallucination detection and motivate future research to develop more robust detection methods for LLM hallucination in other languages.
Abstract:The hallucination issue is recognized as a fundamental deficiency of large language models (LLMs), especially when applied to fields such as finance, education, and law. Despite the growing concerns, there has been a lack of empirical investigation. In this paper, we provide an empirical examination of LLMs' hallucination behaviors in financial tasks. First, we empirically investigate LLM model's ability of explaining financial concepts and terminologies. Second, we assess LLM models' capacity of querying historical stock prices. Third, to alleviate the hallucination issue, we evaluate the efficacy of four practical methods, including few-shot learning, Decoding by Contrasting Layers (DoLa), the Retrieval Augmentation Generation (RAG) method and the prompt-based tool learning method for a function to generate a query command. Finally, our major finding is that off-the-shelf LLMs experience serious hallucination behaviors in financial tasks. Therefore, there is an urgent need to call for research efforts in mitigating LLMs' hallucination.
Abstract:Large Language Models (LLMs) have demonstrated remarkable proficiency in generating fluent text. However, they often encounter the challenge of generating inaccurate or hallucinated content. This issue is common in both non-retrieval-based generation and retrieval-augmented generation approaches, and existing post-hoc rectification methods may not address the accumulated hallucination errors that may be caused by the "snowballing" issue, especially in reasoning tasks. To tackle these challenges, we introduce a novel approach called Real-time Verification and Rectification (Ever). Instead of waiting until the end of the generation process to rectify hallucinations, Ever employs a real-time, step-wise generation and hallucination rectification strategy. The primary objective is to detect and rectify hallucinations as they occur during the text generation process. When compared to both retrieval-based and non-retrieval-based baselines, Ever demonstrates a significant improvement in generating trustworthy and factually accurate text across a diverse range of tasks, including short-form QA, biography generation, and multi-hop reasoning.
Abstract:Pretrained Language Models (PLMs) learn rich cross-lingual knowledge and can be finetuned to perform well on diverse tasks such as translation and multilingual word sense disambiguation (WSD). However, they often struggle at disambiguating word sense in a zero-shot setting. To better understand this contrast, we present a new study investigating how well PLMs capture cross-lingual word sense with Contextual Word-Level Translation (C-WLT), an extension of word-level translation that prompts the model to translate a given word in context. We find that as the model size increases, PLMs encode more cross-lingual word sense knowledge and better use context to improve WLT performance. Building on C-WLT, we introduce a zero-shot approach for WSD, tested on 18 languages from the XL-WSD dataset. Our method outperforms fully supervised baselines on recall for many evaluation languages without additional training or finetuning. This study presents a first step towards understanding how to best leverage the cross-lingual knowledge inside PLMs for robust zero-shot reasoning in any language.