Abstract:Scene understanding is a fundamental capability needed in many domains, ranging from question-answering to robotics. Unlike recent end-to-end approaches that must explicitly learn varying compositions of the same scene, our method reasons over their constituent objects and analyzes their arrangement to infer a scene's meaning. We propose a novel approach that reasons over a scene's scene- and knowledge-graph, capturing spatial information while being able to utilize general domain knowledge in a joint graph search. Empirically, we demonstrate the feasibility of our method on the ADE20K dataset and compare it to current scene understanding approaches.
Abstract:The correct specification of reward models is a well-known challenge in reinforcement learning. Hand-crafted reward functions often lead to inefficient or suboptimal policies and may not be aligned with user values. Reinforcement learning from human feedback is a successful technique that can mitigate such issues, however, the collection of human feedback can be laborious. Recent works have solicited feedback from pre-trained large language models rather than humans to reduce or eliminate human effort, however, these approaches yield poor performance in the presence of hallucination and other errors. This paper studies the advantages and limitations of reinforcement learning from large language model feedback and proposes a simple yet effective method for soliciting and applying feedback as a potential-based shaping function. We theoretically show that inconsistent rankings, which approximate ranking errors, lead to uninformative rewards with our approach. Our method empirically improves convergence speed and policy returns over commonly used baselines even with significant ranking errors, and eliminates the need for complex post-processing of reward functions.
Abstract:This paper introduces a novel transfer learning framework for deep multi-agent reinforcement learning. The approach automatically combines goal-conditioned policies with temporal contrastive learning to discover meaningful sub-goals. The approach involves pre-training a goal-conditioned agent, finetuning it on the target domain, and using contrastive learning to construct a planning graph that guides the agent via sub-goals. Experiments on multi-agent coordination Overcooked tasks demonstrate improved sample efficiency, the ability to solve sparse-reward and long-horizon problems, and enhanced interpretability compared to baselines. The results highlight the effectiveness of integrating goal-conditioned policies with unsupervised temporal abstraction learning for complex multi-agent transfer learning. Compared to state-of-the-art baselines, our method achieves the same or better performances while requiring only 21.7% of the training samples.
Abstract:Task-oriented grasping of unfamiliar objects is a necessary skill for robots in dynamic in-home environments. Inspired by the human capability to grasp such objects through intuition about their shape and structure, we present a novel zero-shot task-oriented grasping method leveraging a geometric decomposition of the target object into simple, convex shapes that we represent in a graph structure, including geometric attributes and spatial relationships. Our approach employs minimal essential information - the object's name and the intended task - to facilitate zero-shot task-oriented grasping. We utilize the commonsense reasoning capabilities of large language models to dynamically assign semantic meaning to each decomposed part and subsequently reason over the utility of each part for the intended task. Through extensive experiments on a real-world robotics platform, we demonstrate that our grasping approach's decomposition and reasoning pipeline is capable of selecting the correct part in 92% of the cases and successfully grasping the object in 82% of the tasks we evaluate. Additional videos, experiments, code, and data are available on our project website: https://shapegrasp.github.io/.
Abstract:Being able to understand visual scenes is a precursor for many downstream tasks, including autonomous driving, robotics, and other vision-based approaches. A common approach enabling the ability to reason over visual data is Scene Graph Generation (SGG); however, many existing approaches assume undisturbed vision, i.e., the absence of real-world corruptions such as fog, snow, smoke, as well as non-uniform perturbations like sun glare or water drops. In this work, we propose a novel SGG benchmark containing procedurally generated weather corruptions and other transformations over the Visual Genome dataset. Further, we introduce a corresponding approach, Hierarchical Knowledge Enhanced Robust Scene Graph Generation (HiKER-SGG), providing a strong baseline for scene graph generation under such challenging setting. At its core, HiKER-SGG utilizes a hierarchical knowledge graph in order to refine its predictions from coarse initial estimates to detailed predictions. In our extensive experiments, we show that HiKER-SGG does not only demonstrate superior performance on corrupted images in a zero-shot manner, but also outperforms current state-of-the-art methods on uncorrupted SGG tasks. Code is available at https://github.com/zhangce01/HiKER-SGG.
Abstract:Concept bottleneck models (CBMs) are interpretable models that first predict a set of semantically meaningful features, i.e., concepts, from observations that are subsequently used to condition a downstream task. However, the model's performance strongly depends on the engineered features and can severely suffer from incomplete sets of concepts. Prior works have proposed a side channel -- a residual -- that allows for unconstrained information flow to the downstream task, thus improving model performance but simultaneously introducing information leakage, which is undesirable for interpretability. This work proposes three novel approaches to mitigate information leakage by disentangling concepts and residuals, investigating the critical balance between model performance and interpretability. Through extensive empirical analysis on the CUB, OAI, and CIFAR 100 datasets, we assess the performance of each disentanglement method and provide insights into when they work best. Further, we show how each method impacts the ability to intervene over the concepts and their subsequent impact on task performance.
Abstract:Intelligent agents such as robots are increasingly deployed in real-world, safety-critical settings. It is vital that these agents are able to explain the reasoning behind their decisions to human counterparts; however, their behavior is often produced by uninterpretable models such as deep neural networks. We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions, thus making our method independent from the underlying model's representation. For such models, we first learn a behavior representation and subsequently use it to produce plausible explanations with minimal hallucination while affording user interaction with a pre-trained large language model. We evaluate our method in a multi-agent search-and-rescue environment and demonstrate the effectiveness of our explanations for agents executing various behaviors. Through user studies and empirical experiments, we show that our approach generates explanations as helpful as those produced by a human domain expert while enabling beneficial interactions such as clarification and counterfactual queries.
Abstract:Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: https://sstepput.github.io/Avalon-NLU/
Abstract:While Large Language Models (LLMs) have demonstrated impressive accomplishments in both reasoning and planning, their abilities in multi-agent collaborations remains largely unexplored. This study evaluates LLM-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks, comparing their performance with Multi-Agent Reinforcement Learning (MARL) and planning-based baselines. We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents. Our results reveal limitations in LLM-based agents' planning optimization due to systematic failures in managing long-horizon contexts and hallucination about the task state. We explore the use of explicit belief state representations to mitigate these issues, finding that it enhances task performance and the accuracy of ToM inferences for LLM-based agents.
Abstract:Intelligent agents such as robots are increasingly deployed in real-world, safety-critical settings. It is vital that these agents are able to explain the reasoning behind their decisions to human counterparts, however, their behavior is often produced by uninterpretable models such as deep neural networks. We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions, agnostic to the underlying model representation. We show how a compact representation of the agent's behavior can be learned and used to produce plausible explanations with minimal hallucination while affording user interaction with a pre-trained large language model. Through user studies and empirical experiments, we show that our approach generates explanations as helpful as those generated by a human domain expert while enabling beneficial interactions such as clarification and counterfactual queries.