Magnetic Resonance Imaging (MRI) is an essential diagnostic tool in clinical settings, but its utility is often hindered by noise artifacts introduced during the imaging process.Effective denoising is critical for enhancing image quality while preserving anatomical structures. However, traditional denoising methods, which often assume uniform noise distributions, struggle to handle the non-uniform noise commonly present in MRI images. In this paper, we introduce a novel approach leveraging a sparse mixture-of-experts framework for MRI image denoising. Each expert is a specialized denoising convolutional neural network fine-tuned to target specific noise characteristics associated with different image regions. Our method demonstrates superior performance over state-of-the-art denoising techniques on both synthetic and real-world brain MRI datasets. Furthermore, we show that it generalizes effectively to unseen datasets, highlighting its robustness and adaptability.