Abstract:While multi-agent systems have been shown to significantly enhance the performance of Large Language Models (LLMs) across various tasks and applications, the dense interaction between scaling agents potentially hampers their efficiency and diversity. To address these challenges, we draw inspiration from the sparse mixture-of-agents (SMoE) and propose a sparse mixture-of-agents (SMoA) framework to improve the efficiency and diversity of multi-agent LLMs. Unlike completely connected structures, SMoA introduces novel Response Selection and Early Stopping mechanisms to sparsify information flows among individual LLM agents, striking a balance between performance and efficiency. Additionally, inspired by the expert diversity principle in SMoE frameworks for workload balance between experts, we assign distinct role descriptions to each LLM agent, fostering diverse and divergent thinking. Extensive experiments on reasoning, alignment, and fairness benchmarks demonstrate that SMoA achieves performance comparable to traditional mixture-of-agents approaches but with significantly lower computational costs. Further analysis reveals that SMoA is more stable, has a greater capacity to scale, and offers considerable potential through hyper-parameter optimization. Code and data will be available at: https://github.com/David-Li0406/SMoA.
Abstract:Image generation is a prevailing technique for clinical data augmentation for advancing diagnostic accuracy and reducing healthcare disparities. Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias: (1) The quality of images generated for Caucasian individuals is significantly higher, as measured by the Frechet Inception Distance (FID). (2) The ability of the downstream-task learner to learn critical features from disease images varies across different skin tones. These biases pose significant risks, particularly in skin disease detection, where underrepresentation of certain skin tones can lead to misdiagnosis or neglect of specific conditions. To address these challenges, we propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism, ensuring fairer representation across racial and disease categories. Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
Abstract:Human fact-checkers have specialized domain knowledge that allows them to formulate precise questions to verify information accuracy. However, this expert-driven approach is labor-intensive and is not scalable, especially when dealing with complex multimodal misinformation. In this paper, we propose a fully-automated framework, LRQ-Fact, for multimodal fact-checking. Firstly, the framework leverages Vision-Language Models (VLMs) and Large Language Models (LLMs) to generate comprehensive questions and answers for probing multimodal content. Next, a rule-based decision-maker module evaluates both the original content and the generated questions and answers to assess the overall veracity. Extensive experiments on two benchmarks show that LRQ-Fact improves detection accuracy for multimodal misinformation. Moreover, we evaluate its generalizability across different model backbones, offering valuable insights for further refinement.
Abstract:Large Language Models have demonstrated remarkable abilities across various tasks, with Chain-of-Thought (CoT) prompting emerging as a key technique to enhance reasoning capabilities. However, existing research primarily focuses on improving performance, lacking a comprehensive framework to explain and understand the fundamental factors behind CoT's success. To bridge this gap, we introduce a novel perspective grounded in the Hopfieldian view of cognition in cognitive neuroscience. We establish a connection between CoT reasoning and key cognitive elements such as stimuli, actions, neural populations, and representation spaces. From our view, we can understand the reasoning process as the movement between these representation spaces. Building on this insight, we develop a method for localizing reasoning errors in the response of CoTs. Moreover, we propose the Representation-of-Thought (RoT) framework, which leverages the robustness of low-dimensional representation spaces to enhance the robustness of the reasoning process in CoTs. Experimental results demonstrate that RoT improves the robustness and interpretability of CoT reasoning while offering fine-grained control over the reasoning process.
Abstract:Predicting phenotypes with complex genetic bases based on a small, interpretable set of variant features remains a challenging task. Conventionally, data-driven approaches are utilized for this task, yet the high dimensional nature of genotype data makes the analysis and prediction difficult. Motivated by the extensive knowledge encoded in pre-trained LLMs and their success in processing complex biomedical concepts, we set to examine the ability of LLMs in feature selection and engineering for tabular genotype data, with a novel knowledge-driven framework. We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling, designed with chain-of-thought and ensembling principles, to select and engineer features with the intrinsic knowledge of LLMs. Evaluated on two distinct genotype-phenotype datasets, genetic ancestry and hereditary hearing loss, we find this framework outperforms several data-driven methods, particularly on low-shot regimes. FREEFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
Abstract:Tracking any point based on image frames is constrained by frame rates, leading to instability in high-speed scenarios and limited generalization in real-world applications. To overcome these limitations, we propose an image-event fusion point tracker, FE-TAP, which combines the contextual information from image frames with the high temporal resolution of events, achieving high frame rate and robust point tracking under various challenging conditions. Specifically, we designed an Evolution Fusion module (EvoFusion) to model the image generation process guided by events. This module can effectively integrate valuable information from both modalities operating at different frequencies. To achieve smoother point trajectories, we employed a transformer-based refinement strategy that updates the point's trajectories and features iteratively. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches, particularly improving expected feature age by 24$\%$ on EDS datasets. Finally, we qualitatively validated the robustness of our algorithm in real driving scenarios using our custom-designed high-resolution image-event synchronization device. Our source code will be released at https://github.com/ljx1002/FE-TAP.
Abstract:Visual localization refers to the process of determining camera poses and orientation within a known scene representation. This task is often complicated by factors such as illumination changes and variations in viewing angles. In this paper, we propose HGSLoc, a novel lightweight, plug and-play pose optimization framework, which integrates 3D reconstruction with a heuristic refinement strategy to achieve higher pose estimation accuracy. Specifically, we introduce an explicit geometric map for 3D representation and high-fidelity rendering, allowing the generation of high-quality synthesized views to support accurate visual localization. Our method demonstrates a faster rendering speed and higher localization accuracy compared to NeRF-based neural rendering localization approaches. We introduce a heuristic refinement strategy, its efficient optimization capability can quickly locate the target node, while we set the step-level optimization step to enhance the pose accuracy in the scenarios with small errors. With carefully designed heuristic functions, it offers efficient optimization capabilities, enabling rapid error reduction in rough localization estimations. Our method mitigates the dependence on complex neural network models while demonstrating improved robustness against noise and higher localization accuracy in challenging environments, as compared to neural network joint optimization strategies. The optimization framework proposed in this paper introduces novel approaches to visual localization by integrating the advantages of 3D reconstruction and heuristic refinement strategy, which demonstrates strong performance across multiple benchmark datasets, including 7Scenes and DB dataset.
Abstract:The rapid advancement of Large Language Models (LLMs) has significantly influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities. In this work, we aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective. We begin by categorizing existing feature selection methods with LLMs into two groups: data-driven feature selection which requires samples values to do statistical inference and text-based feature selection which utilizes prior knowledge of LLMs to do semantical associations using descriptive context. We conduct extensive experiments in both classification and regression tasks with LLMs in various sizes (e.g., GPT-4, ChatGPT and LLaMA-2). Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application. We also discuss the challenges and future opportunities in employing LLMs for feature selection, offering insights for further research and development in this emerging field.
Abstract:Model attribution for machine-generated disinformation poses a significant challenge in understanding its origins and mitigating its spread. This task is especially challenging because modern large language models (LLMs) produce disinformation with human-like quality. Additionally, the diversity in prompting methods used to generate disinformation complicates accurate source attribution. These methods introduce domain-specific features that can mask the fundamental characteristics of the models. In this paper, we introduce the concept of model attribution as a domain generalization problem, where each prompting method represents a unique domain. We argue that an effective attribution model must be invariant to these domain-specific features. It should also be proficient in identifying the originating models across all scenarios, reflecting real-world detection challenges. To address this, we introduce a novel approach based on Supervised Contrastive Learning. This method is designed to enhance the model's robustness to variations in prompts and focuses on distinguishing between different source LLMs. We evaluate our model through rigorous experiments involving three common prompting methods: ``open-ended'', ``rewriting'', and ``paraphrasing'', and three advanced LLMs: ``llama 2'', ``chatgpt'', and ``vicuna''. Our results demonstrate the effectiveness of our approach in model attribution tasks, achieving state-of-the-art performance across diverse and unseen datasets.
Abstract:Decentralized social media platforms like Bluesky Social (Bluesky) have made it possible to publicly disclose some user behaviors with millisecond-level precision. Embracing Bluesky's principles of open-source and open-data, we present the first collection of the temporal dynamics of user-driven social interactions. BlueTempNet integrates multiple types of networks into a single multi-network, including user-to-user interactions (following and blocking users) and user-to-community interactions (creating and joining communities). Communities are user-formed groups in custom Feeds, where users subscribe to posts aligned with their interests. Following Bluesky's public data policy, we collect existing Bluesky Feeds, including the users who liked and generated these Feeds, and provide tools to gather users' social interactions within a date range. This data-collection strategy captures past user behaviors and supports the future data collection of user behavior.