Abstract:The rapid proliferation of fake news on social media threatens social stability, creating an urgent demand for more effective detection methods. While many promising approaches have emerged, most rely on content analysis with limited semantic depth, leading to suboptimal comprehension of news content.To address this limitation, capturing broader-range semantics is essential yet challenging, as it introduces two primary types of noise: fully connecting sentences in news graphs often adds unnecessary structural noise, while highly similar but authenticity-irrelevant sentences introduce feature noise, complicating the detection process. To tackle these issues, we propose BREAK, a broad-range semantics model for fake news detection that leverages a fully connected graph to capture comprehensive semantics while employing dual denoising modules to minimize both structural and feature noise. The semantic structure denoising module balances the graph's connectivity by iteratively refining it between two bounds: a sequence-based structure as a lower bound and a fully connected graph as the upper bound. This refinement uncovers label-relevant semantic interrelations structures. Meanwhile, the semantic feature denoising module reduces noise from similar semantics by diversifying representations, aligning distinct outputs from the denoised graph and sequence encoders using KL-divergence to achieve feature diversification in high-dimensional space. The two modules are jointly optimized in a bi-level framework, enhancing the integration of denoised semantics into a comprehensive representation for detection. Extensive experiments across four datasets demonstrate that BREAK significantly outperforms existing methods in identifying fake news. Code is available at https://anonymous.4open.science/r/BREAK.
Abstract:Computational argumentation, which involves generating answers or summaries for controversial topics like abortion bans and vaccination, has become increasingly important in today's polarized environment. Sophisticated LLM capabilities offer the potential to provide nuanced, evidence-based answers to such questions through Retrieval-Augmented Argumentation (RAArg), leveraging real-world evidence for high-quality, grounded arguments. However, evaluating RAArg remains challenging, as human evaluation is costly and difficult for complex, lengthy answers on complicated topics. At the same time, re-using existing argumentation datasets is no longer sufficient, as they lack long, complex arguments and realistic evidence from potentially misleading sources, limiting holistic evaluation of retrieval effectiveness and argument quality. To address these gaps, we investigate automated evaluation methods using multiple fine-grained LLM judges, providing better and more interpretable assessments than traditional single-score metrics and even previously reported human crowdsourcing. To validate the proposed techniques, we introduce ConQRet, a new benchmark featuring long and complex human-authored arguments on debated topics, grounded in real-world websites, allowing an exhaustive evaluation across retrieval effectiveness, argument quality, and groundedness. We validate our LLM Judges on a prior dataset and the new ConQRet benchmark. Our proposed LLM Judges and the ConQRet benchmark can enable rapid progress in computational argumentation and can be naturally extended to other complex retrieval-augmented generation tasks.
Abstract:Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at \url{https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge} and \url{https://llm-as-a-judge.github.io}.
Abstract:Existing claim verification datasets often do not require systems to perform complex reasoning or effectively interpret multimodal evidence. To address this, we introduce a new task: multi-hop multimodal claim verification. This task challenges models to reason over multiple pieces of evidence from diverse sources, including text, images, and tables, and determine whether the combined multimodal evidence supports or refutes a given claim. To study this task, we construct MMCV, a large-scale dataset comprising 16k multi-hop claims paired with multimodal evidence, generated and refined using large language models, with additional input from human feedback. We show that MMCV is challenging even for the latest state-of-the-art multimodal large language models, especially as the number of reasoning hops increases. Additionally, we establish a human performance benchmark on a subset of MMCV. We hope this dataset and its evaluation task will encourage future research in multimodal multi-hop claim verification.
Abstract:Large Language Models (LLMs) hold great promise to revolutionize current clinical systems for their superior capacities on medical text processing tasks and medical licensing exams. Meanwhile, traditional ML models such as SVM and XGBoost have still been mainly adopted in clinical prediction tasks. An emerging question is Can LLMs beat traditional ML models in clinical prediction? Thus, we build a new benchmark ClinicalBench to comprehensively study the clinical predictive modeling capacities of both general-purpose and medical LLMs, and compare them with traditional ML models. ClinicalBench embraces three common clinical prediction tasks, two databases, 14 general-purpose LLMs, 8 medical LLMs, and 11 traditional ML models. Through extensive empirical investigation, we discover that both general-purpose and medical LLMs, even with different model scales, diverse prompting or fine-tuning strategies, still cannot beat traditional ML models in clinical prediction yet, shedding light on their potential deficiency in clinical reasoning and decision-making. We call for caution when practitioners adopt LLMs in clinical applications. ClinicalBench can be utilized to bridge the gap between LLMs' development for healthcare and real-world clinical practice.
Abstract:Large Language Models (LLMs) suffer from hallucinations, referring to the non-factual information in generated content, despite their superior capacities across tasks. Meanwhile, knowledge editing has been developed as a new popular paradigm to correct the erroneous factual knowledge encoded in LLMs with the advantage of avoiding retraining from scratch. However, one common issue of existing evaluation datasets for knowledge editing is that they do not ensure LLMs actually generate hallucinated answers to the evaluation questions before editing. When LLMs are evaluated on such datasets after being edited by different techniques, it is hard to directly adopt the performance to assess the effectiveness of different knowledge editing methods in correcting hallucinations. Thus, the fundamental question remains insufficiently validated: Can knowledge editing really correct hallucinations in LLMs? We proposed HalluEditBench to holistically benchmark knowledge editing methods in correcting real-world hallucinations. First, we rigorously construct a massive hallucination dataset with 9 domains, 26 topics and more than 6,000 hallucinations. Then, we assess the performance of knowledge editing methods in a holistic way on five dimensions including Efficacy, Generalization, Portability, Locality, and Robustness. Through HalluEditBench, we have provided new insights into the potentials and limitations of different knowledge editing methods in correcting hallucinations, which could inspire future improvements and facilitate the progress in the field of knowledge editing.
Abstract:Energy consumption has become a critical design metric and a limiting factor in the development of future computing architectures, from small wearable devices to large-scale leadership computing facilities. The predominant methods in energy management optimization are focused on CPUs. However, GPUs are increasingly significant and account for the majority of energy consumption in heterogeneous high performance computing (HPC) systems. Moreover, they typically rely on either purely offline training or a hybrid of offline and online training, which are impractical and lead to energy loss during data collection. Therefore, this paper studies a novel and practical online energy optimization problem for GPUs in HPC scenarios. The problem is challenging due to the inherent performance-energy trade-offs of GPUs, the exploration & exploitation dilemma across frequencies, and the lack of explicit performance counters in GPUs. To address these challenges, we formulate the online energy consumption optimization problem as a multi-armed bandit framework and develop a novel bandit based framework EnergyUCB. EnergyUCB is designed to dynamically adjust GPU core frequencies in real-time, reducing energy consumption with minimal impact on performance. Specifically, the proposed framework EnergyUCB (1) balances the performance-energy trade-off in the reward function, (2) effectively navigates the exploration & exploitation dilemma when adjusting GPU core frequencies online, and (3) leverages the ratio of GPU core utilization to uncore utilization as a real-time GPU performance metric. Experiments on a wide range of real-world HPC benchmarks demonstrate that EnergyUCB can achieve substantial energy savings. The code of EnergyUCB is available at https://github.com/XiongxiaoXu/EnergyUCB-Bandit.
Abstract:Automatic Medical Imaging Narrative generation aims to alleviate the workload of radiologists by producing accurate clinical descriptions directly from radiological images. However, the subtle visual nuances and domain-specific terminology in medical images pose significant challenges compared to generic image captioning tasks. Existing approaches often neglect the vital distinction between normal and abnormal findings, leading to suboptimal performance. In this work, we propose FODA-PG, a novel Fine-grained Organ-Disease Adaptive Partitioning Graph framework that addresses these limitations through domain-adaptive learning. FODA-PG constructs a granular graphical representation of radiological findings by separating disease-related attributes into distinct "disease-specific" and "disease-free" categories based on their clinical significance and location. This adaptive partitioning enables our model to capture the nuanced differences between normal and pathological states, mitigating the impact of data biases. By integrating this fine-grained semantic knowledge into a powerful transformer-based architecture and providing rigorous mathematical justifications for its effectiveness, FODA-PG generates precise and clinically coherent reports with enhanced generalization capabilities. Extensive experiments on the IU-Xray and MIMIC-CXR benchmarks demonstrate the superiority of our approach over state-of-the-art methods, highlighting the importance of domain adaptation in medical report generation.
Abstract:Model attribution for machine-generated disinformation poses a significant challenge in understanding its origins and mitigating its spread. This task is especially challenging because modern large language models (LLMs) produce disinformation with human-like quality. Additionally, the diversity in prompting methods used to generate disinformation complicates accurate source attribution. These methods introduce domain-specific features that can mask the fundamental characteristics of the models. In this paper, we introduce the concept of model attribution as a domain generalization problem, where each prompting method represents a unique domain. We argue that an effective attribution model must be invariant to these domain-specific features. It should also be proficient in identifying the originating models across all scenarios, reflecting real-world detection challenges. To address this, we introduce a novel approach based on Supervised Contrastive Learning. This method is designed to enhance the model's robustness to variations in prompts and focuses on distinguishing between different source LLMs. We evaluate our model through rigorous experiments involving three common prompting methods: ``open-ended'', ``rewriting'', and ``paraphrasing'', and three advanced LLMs: ``llama 2'', ``chatgpt'', and ``vicuna''. Our results demonstrate the effectiveness of our approach in model attribution tasks, achieving state-of-the-art performance across diverse and unseen datasets.
Abstract:Knowledge editing techniques have been increasingly adopted to efficiently correct the false or outdated knowledge in Large Language Models (LLMs), due to the high cost of retraining from scratch. Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection. Then, we find that editing attacks can inject both types of misinformation into LLMs, and the effectiveness is particularly high for commonsense misinformation injection. For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a high bias increase in general outputs of LLMs, which are even highly irrelevant to the injected sentence, indicating a catastrophic impact on the overall fairness of LLMs. Then, we further illustrate the high stealthiness of editing attacks, measured by their impact on the general knowledge and reasoning capacities of LLMs, and show the hardness of defending editing attacks with empirical evidence. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs.