Abstract:With the advancement of the Industrial Internet of Things (IIoT), IIoT services now exhibit diverse Quality of Service (QoS) requirements in terms of delay, determinacy, and security, which pose significant challenges for alignment with existing network resources. Reconfigurable Intelligent Surface (RIS), a key enabling technology for IIoT, not only optimizes signal propagation and enhances network performance but also ensures secure communication and deterministic delays to mitigate threats such as data leakage and eavesdropping. In this paper, we conduct a deterministic delay analysis under a specified decoding error rate for RIS-assisted IIoT communication systems using Stochastic Network Calculus (SNC). We propose an on-demand joint strategy to maximize delay determinacy while guaranteeing secure transmission performance. This is achieved by jointly optimizing the transmit power, channel blocklength (CBL) at the user end, and the phase shift matrix at the RIS. Furthermore, we introduce a State Interdependence-Driven Parameterized Deep Q-Network (SID-PDQN) algorithm to intelligently enforce on-demand performance guarantees. Simulation results demonstrate that the proposed SID-PDQN algorithm significantly enhances network performance compared to baseline methods such as DQN, Dueling-DQN, and DDPG.
Abstract:The integration of Knowledge Graphs (KGs) into the Retrieval Augmented Generation (RAG) framework has attracted significant interest, with early studies showing promise in mitigating hallucinations and improving model accuracy. However, a systematic understanding and comparative analysis of the rapidly emerging KG-RAG methods are still lacking. This paper seeks to lay the foundation for systematically answering the question of when and how to use KG-RAG by analyzing their performance in various application scenarios associated with different technical configurations. After outlining the mind map using KG-RAG framework and summarizing its popular pipeline, we conduct a pilot empirical study of KG-RAG works to reimplement and evaluate 6 KG-RAG methods across 7 datasets in diverse scenarios, analyzing the impact of 9 KG-RAG configurations in combination with 17 LLMs. Our results underscore the critical role of appropriate application conditions and optimal configurations of KG-RAG components.
Abstract:Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.
Abstract:In recent years, Semantic Communication (SemCom), which aims to achieve efficient and reliable transmission of meaning between agents, has garnered significant attention from both academia and industry. To ensure the security of communication systems, encryption techniques are employed to safeguard confidentiality and integrity. However, traditional cryptography-based encryption algorithms encounter obstacles when applied to SemCom. Motivated by this, this paper explores the feasibility of applying homomorphic encryption to SemCom. Initially, we review the encryption algorithms utilized in mobile communication systems and analyze the challenges associated with their application to SemCom. Subsequently, we employ scale-invariant feature transform to demonstrate that semantic features can be preserved in homomorphic encrypted ciphertext. Based on this finding, we propose a task-oriented SemCom scheme secured through homomorphic encryption. We design the privacy preserved deep joint source-channel coding (JSCC) encoder and decoder, and the frequency of key updates can be adjusted according to service requirements without compromising transmission performance. Simulation results validate that, when compared to plaintext images, the proposed scheme can achieve almost the same classification accuracy performance when dealing with homomorphic ciphertext images. Furthermore, we provide potential future research directions for homomorphic encrypted SemCom.
Abstract:Semantic communication (SemCom) is regarded as a promising and revolutionary technology in 6G, aiming to transcend the constraints of ``Shannon's trap" by filtering out redundant information and extracting the core of effective data. Compared to traditional communication paradigms, SemCom offers several notable advantages, such as reducing the burden on data transmission, enhancing network management efficiency, and optimizing resource allocation. Numerous researchers have extensively explored SemCom from various perspectives, including network architecture, theoretical analysis, potential technologies, and future applications. However, as SemCom continues to evolve, a multitude of security and privacy concerns have arisen, posing threats to the confidentiality, integrity, and availability of SemCom systems. This paper presents a comprehensive survey of the technologies that can be utilized to secure SemCom. Firstly, we elaborate on the entire life cycle of SemCom, which includes the model training, model transfer, and semantic information transmission phases. Then, we identify the security and privacy issues that emerge during these three stages. Furthermore, we summarize the techniques available to mitigate these security and privacy threats, including data cleaning, robust learning, defensive strategies against backdoor attacks, adversarial training, differential privacy, cryptography, blockchain technology, model compression, and physical-layer security. Lastly, this paper outlines future research directions to guide researchers in related fields.
Abstract:Large language models (LLMs) have demonstrated strong capabilities in text understanding and generation. However, they often lack factuality, producing a mixture of true and false information, especially in long-form generation. In this work, we investigates the factuality of long-form text generation across various large language models (LLMs), including GPT-4, Gemini-1.5-Pro, Claude-3-Opus, Llama-3-70B, and Mistral. Our analysis reveals that factuality scores tend to decline in later sentences of the generated text, accompanied by a rise in the number of unsupported claims. Furthermore, we explore the effectiveness of different evaluation settings to assess whether LLMs can accurately judge the correctness of their own outputs: Self-Known (the percentage of supported atomic claims, decomposed from LLM outputs, that the corresponding LLMs judge as correct) and Self-Unknown (the percentage of unsupported atomic claims that the corresponding LLMs judge as incorrect). The results indicate that even advanced models like GPT-4 and Gemini-1.5-Pro fail to achieve perfect Self-Known scores, while their Self-Unknown scores remain notably above zero, reflecting ongoing uncertainty in their self-assessments. Moreover, we find a correlation between higher Self-Known scores and improved factuality, while higher Self-Unknown scores are associated with lower factuality. Interestingly, even without significant changes in the models' self-judgment (Self-Known and Self-Unknown), the number of unsupported claims can increases, likely as an artifact of long-form generation. These findings show the limitations of current LLMs in long-form generation, and provide valuable insights for improving factuality in long-form text generation.
Abstract:Despite the success of text retrieval in many NLP tasks, code retrieval remains a largely underexplored area. Most text retrieval systems are tailored for natural language queries, often neglecting the specific challenges of retrieving code. This gap leaves existing models unable to effectively capture the diversity of programming languages and tasks across different domains, highlighting the need for more focused research in code retrieval. To address this, we introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters. Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework, enhancing model generalizability and retrieval performance. Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark. In addition to excelling in code retrieval, our models demonstrate competitive performance on the widely adopted BeIR text retrieval benchmark, offering versatility across domains. Experimental results demonstrate that improving retrieval performance significantly enhances end-to-end Retrieval-Augmented Generation (RAG) performance for code-related tasks.
Abstract:Physical-Layer Authentication (PLA) offers endogenous security, lightweight implementation, and high reliability, making it a promising complement to upper-layer security methods in Edge Intelligence (EI)-empowered Industrial Internet of Things (IIoT). However, state-of-the-art Channel State Information (CSI)-based PLA schemes face challenges in recognizing mobile multi-users due to the limited reliability of CSI fingerprints in low Signal-to-Noise Ratio (SNR) environments and the constantly shifting CSI distributions with user movements. To address these issues, we propose a Temporal Dynamic Graph Convolutional Network (TDGCN)-based PLA scheme. This scheme harnesses Intelligent Reflecting Surfaces (IRSs) to refine CSI fingerprint precision and employs Graph Neural Networks (GNNs) to capture the spatio-temporal dynamics induced by user movements and IRS deployments. Specifically, we partition hierarchical CSI fingerprints into multivariate time series and utilize dynamic GNNs to capture their associations. Additionally, Temporal Convolutional Networks (TCNs) handle temporal dependencies within each CSI fingerprint dimension. Dynamic Graph Isomorphism Networks (GINs) and cascade node clustering pooling further enable efficient information aggregation and reduced computational complexity. Simulations demonstrate the proposed scheme's superior authentication accuracy compared to seven baseline schemes.
Abstract:Instruction-following capabilities in large language models (LLMs) have significantly progressed, enabling more complex user interactions through detailed prompts. However, retrieval systems have not matched these advances, most of them still relies on traditional lexical and semantic matching techniques that fail to fully capture user intent. Recent efforts have introduced instruction-aware retrieval models, but these primarily focus on intrinsic content relevance, which neglects the importance of customized preferences for broader document-level attributes. This study evaluates the instruction-following capabilities of various retrieval models beyond content relevance, including LLM-based dense retrieval and reranking models. We develop InfoSearch, a novel retrieval evaluation benchmark spanning six document-level attributes: Audience, Keyword, Format, Language, Length, and Source, and introduce novel metrics -- Strict Instruction Compliance Ratio (SICR) and Weighted Instruction Sensitivity Evaluation (WISE) to accurately assess the models' responsiveness to instructions. Our findings reveal that while reranking models generally surpass retrieval models in instruction following, they still face challenges in handling certain attributes. Moreover, although instruction fine-tuning and increased model size lead to better performance, most models fall short of achieving comprehensive instruction compliance as assessed by our benchmark.
Abstract:While reasoning capabilities typically emerge in large language models (LLMs) with tens of billions of parameters, recent research focuses on improving smaller open-source models through knowledge distillation (KD) from commercial LLMs. However, many of these studies rely solely on responses from a single LLM as the gold rationale, unlike the natural human learning process, which involves understanding both the correct answers and the reasons behind mistakes. In this paper, we introduce a novel Fault-Aware Distillation via Peer-Review (FAIR) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.